Research Article
BibTex RIS Cite

Investigating the Radiation Shielding Capacities of Certain Minerals

Year 2023, Volume: 4 Issue: 2, 8 - 18, 15.12.2023

Abstract

In this study, the mass attenuation coefficient (µ/ρ), linear attenuation coefficient (µ), half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP) parameters of belledoite, berndite, dilithium, cadmoselite, eskebornite, and altaite minerals, which can be found in volcanic rocks around volcanic mountains, various rock and soil types, mines, etc., have been theoretically examined within the energy range of 59.5 – 1332.5 keV using WinXCOM.
According to the obtained results, among the six minerals investigated, altaite mineral has been identified as the most effective material for radiation shielding. It has been determined that this mineral exhibits superior shielding capacity against high-energy photon radiations when compared to traditional concrete and some alternative alloys. In terms of mass attenuation coefficients, it was observed that dilithium mineral yielded the least efficient results within the studied energy range. Consequently, the findings of this research suggest that utilizing altaite mineral as a protective shielding material against radiation could be advantageous, particularly in nuclear laboratories, medical applications, and nuclear power plants.

References

  • Mikhailova, A. F., & Tashlykov, O. L. (2020). The ways of implementation of the optimization principle in the personnel radiological protection, Physics of Atomic Nuclei, 83, 1718-1726.
  • Tashlykov, O. L., Shcheklein, S. E., Russkikh, I. M., Seleznev, E. N., & Kozlov, A. V. (2017). Composition optimization of homogeneous radiation-protective materials for planned irradiation conditions, Atomic Energy, 121, 303-307.
  • Russkikh, I. M., Seleznev, E. N., Tashlykov, O. L., & Shcheklein, S. E. (2015). Experimental and theoretical study of organometallic radiation-protective materials adapted to radiation sources with a complex isotopic composition, Physics of Atomic Nuclei, 78, 1451-1456.
  • Elmahroug, Y., Almatari, M., Sayyed, MI, Dong, MG ve Tekin, HO (2018). Bi2O3-V2O5-TeO2 cam sisteminin radyasyondan korunma özelliklerinin MCNP5 kodu kullanılarak araştırılması, Kristal Olmayan Katılar Dergisi , 499 , 32-40.
  • Kouhara, Y., Yoshida, M., Takei, T., Iwasaki, H., Takemiya, T., Hatate, Y., ... & Mizuta, K. (2008). Application of lead-free vanadium sealing glasses to the flat fluorescence lump, Kagaku Kogaku Ronbunshu, 34(2), 287-290.
  • Zakaly, H. M., Saudi, H. A., Issa, S. A., Rashad, M., Elazaka, A. I., Tekin, H. O., & Saddeek, Y. B. (2021). Alteration of optical, structural, mechanical durability and nuclear radiation attenuation properties of barium borosilicate glasses through BaO reinforcement: Experimental and numerical analyses, Ceramics International, 47(4), 5587-5596.
  • Issa, S. A., Zakaly, H. M., Tekin, H. O., Saudi, H. A., Badawi, A., Pyshkina, M., ... & Ene, A. (2021). Exploring the FTIR, optical and nuclear radiation shielding properties of samarium-borate glass: a characterization through experimental and simulation methods, Nanomaterials, 11(7), 1713.
  • El-Nahal, M. A., Elsafi, M., Sayyed, M. I., Khandaker, M. U., Osman, H., Elesawy, B. H., ... & Abbas, M. I. (2021). Understanding the effect of introducing micro-and nanoparticle bismuth oxide (Bi2O3) on the gamma ray shielding performance of novel concrete. Materials, 14(21), 6487.
  • Aktas, B., Acikgoz, A., Yilmaz, D., Yalcin, S., Dogru, K., & Yorulmaz, N. (2022). The role of TeO2 insertion on the radiation shielding, structural and physical properties of borosilicate glasses. Journal of Nuclear Materials, 563, 153619.
  • Al-Ghamdi, H., Elsafi, M., Sayyed, M. I., Almuqrin, A. H., & Tamayo, P. (2022). Performance of newly developed concretes incorporating WO3 and barite as radiation shielding material. Journal of Materials Research and Technology, 19, 4103-4114.
  • Gashti, M. F., Mousavinejad, S. H. G., & Khaleghi, S. J. (2023). Evaluation of gamma and neutron radiation shielding properties of the GGBFS based geopolymer concrete. Construction and Building Materials, 367, 130308.
  • Khan, M. N. A., Yaqub, M., & Malik, A. H. (2022). High density concrete incorporating grit scale aggregates for 4th generation nuclear power plants. Construction and Building Materials, 337, 127578.
  • Alzahrani, J.S., Alrowaili, Z.A., Alqahtani, M.S. et al. Influence of Alkaline Earth Metals on the Optical Properties and Radiation-Shielding Effectiveness of Sm3+-Doped Zinc Borophosphate Glasses. J. Electron. Mater. 52, 7794–7806 (2023).
  • UmashankaraRaja, R., Manjunatha, H.C., Vidya, Y.S. et al. Effect of chromium substitution on the gamma and neutron radiation shielding properties of calcium hexaferrite nanoparticles. Appl. Phys. A 129, 709 (2023).
  • Hesham M.H. Zakaly, Islam M. Nabil, Shams A.M. Issa, N. Almousa, Z.Y. Khattari, Y.S. Rammah, Probing the elasticity and radiation protection potential of neodymium(III) doped zinc and niobium tellurite glasses: An integrated simulated and applied physics perspective, Materials Today Communications, Volume 37, 2023.
  • M.S. AlBuriahi, H.H. Hegazy, Faisal Alresheedi, I.O. Olarinoye, H. Algarni, H.O. Tekin, H.A. Saudi, Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses,Ceramics International,Volume 47, Issue 5, 2021.
  • Alsaab, A. H., & Zeghib, S. (2023). Study of Prepared Lead-Free Polymer Nanocomposites for X-and Gamma-ray Shielding in Healthcare Applications. Polymers, 15(9), 2142.
  • More, C. V., Alsayed, Z., Badawi, M. S., Thabet, A. A., & Pawar, P. P. (2021). Polymeric composite materials for radiation shielding: a review. Environmental chemistry letters, 19, 2057-2090.
  • Alshahri, S., Alsuhybani, M., Alosime, E., Almurayshid, M., Alrwais, A., & Alotaibi, S. (2021). LDPE/bismuth oxide nanocomposite: Preparation, characterization and application in X-ray shielding. Polymers, 13(18), 3081.
  • Kumar, K., & Davim, J. P. (Eds.). (2018). Composites and advanced materials for industrial applications. IGI Global.
  • Chang, L., Zhang, Y., Liu, Y., Fang, J., Luan, W., Yang, X., & Zhang, W. (2015). Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 356, 88-93.
  • Mohamed A. Saafan, Zeinab A. Etman, Abdelrahman S. Jaballah, Mohamed A. Abdelati, Strength and nuclear shielding performance of heavyweight concrete experimental and theoretical analysis using WinXCOM program, Progress in Nuclear Energy, Volume 160, 2023.
  • Basha, B., Alsufyani, S. J., Olarinoye, I. O., Alrowaili, Z. A., Sadeq, M. S., Misbah, M. H., ... & Al-Buriahi, M. S. (2023). Synthesis, physical, optical, and radiation attenuation efficiency of Bi2O3+ SrF2+ Li2O glass system. Journal of Radiation Research and Applied Sciences, 16(4), 100676.
  • Khan, S. U. D., Khan, S. U. D., Almutairi, Z., Haider, S., & Ali, S. M. (2020). Development of theoretical-computational model for radiation shielding. Journal of Radiation Research and Applied Sciences, 13(1), 606-615.
  • Knoll, G.F. (2010) Radiation Detection and Measurement. 4th Edition, Wiley, Hoboken, 217.
  • Muhammad, N. A., Armynah, B., & Tahir, D. (2022). High transparent wood composite for effective X-ray shielding applications. Materials Research Bulletin, 154, 111930.
  • Sayyed, M. I. (2017). Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. Journal of Alloys and Compounds, 695, 3191-3197.
  • El-Sayed A. Waly, Michael A. Fusco, Mohamed A. Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials, Annals of Nuclear Energy, Volume 96, 2016, Pages 26-30.
  • Almurayshid, M., Alsagabi, S., Alssalim, Y., Alotaibi, Z., & Almsalam, R. (2021). Feasibility of polymer-based composite materials as radiation shield. Radiation Physics and Chemistry, 183, 109425.
  • Islam, S., Mahmoud, K. A., Sayyed, M. I., Alim, B., Rahman, M. M., & Mollah, A. S. (2020). Study on the radiation attenuation properties of locally available bees-wax as a tissue equivalent bolus material in radiotherapy. Radiation Physics and Chemistry, 172, 108559.
  • Al-Hadeethi, Y., Sayyed, M. I., Mohammed, H., & Rimondini, L. (2020). X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies. Ceramics International, 46(1), 251-257.
  • Akman F., Durak R., Turhan MF., Kaçal M.R., 2015. Studies on effective atomic numbers,electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Applied Radiation and Isotopes, 101: 10.
  • Mahmoud, K. A., Tashlykov, O. L., El Wakil, A. F., Zakaly, H. M., & El Aassy, I. E. (2019, December). Investigation of radiation shielding properties for some building materials reinforced by basalt powder. In AIP Conference Proceedings (Vol. 2174, No. 1).
  • Application of the MCNP5 code to simulate the shielding features of concrete samples with different aggregates, Radiation Physics and Chemistry, Volume 174, 2020.

Bazı Minerallerin Radyasyon Zırhlama Kapasitelerinin Araştırılması

Year 2023, Volume: 4 Issue: 2, 8 - 18, 15.12.2023

Abstract

Bu çalışmada, yeryüzünde volkanik dağlar etrafındaki volkanik kayaçlarda, bazı kaya ve toprak çeşitlerinde, madenlerde vs. görülebilen belledoite, berndite, dilithium, cadmoselite, eskebornite ve altaite mineralinin kütle azaltma katsayısı (µ/ρ), lineer azaltma katsayısı (µ), yarı kalınlık değeri (YKD), onda_bir kalınlık değeri (ODK) ve ortalama serbest yol (OSY) parametreleri teorik (WinXCOM) olarak 59,5 – 1332,5 keV foton enerjisi aralığında incelenmiştir.
Elde edilen sonuçlara göre çalışılan 6 adet mineral içinde radyasyon zırhlamada en etkili olan mineralin altaite minerali olduğu görülmüştür. Bu mineralin yüksek enerjili foton radyasyonlarına karşı zırhlama kapasitesinin, geleneksel beton ve bazı alternatif alaşımların zırhlama yeteneğinden daha iyi bir performansa sahip olduğu tespit edilmiştir. Kütle azaltma katsayısı açısından ise çalışılan enerji aralığında en verimsiz sonucun ise dilithium mineraline ait olduğu görüldü. Mevcut araştırmanın sonuçlarına göre altaite mineralinin nükleer laboratuvarlar, tıbbi uygulamalar ve nükleer santrallerde gibi alanlarda radyasyondan koruyucu zırh malzemesi olarak kullanılması yararlı olabilir.

References

  • Mikhailova, A. F., & Tashlykov, O. L. (2020). The ways of implementation of the optimization principle in the personnel radiological protection, Physics of Atomic Nuclei, 83, 1718-1726.
  • Tashlykov, O. L., Shcheklein, S. E., Russkikh, I. M., Seleznev, E. N., & Kozlov, A. V. (2017). Composition optimization of homogeneous radiation-protective materials for planned irradiation conditions, Atomic Energy, 121, 303-307.
  • Russkikh, I. M., Seleznev, E. N., Tashlykov, O. L., & Shcheklein, S. E. (2015). Experimental and theoretical study of organometallic radiation-protective materials adapted to radiation sources with a complex isotopic composition, Physics of Atomic Nuclei, 78, 1451-1456.
  • Elmahroug, Y., Almatari, M., Sayyed, MI, Dong, MG ve Tekin, HO (2018). Bi2O3-V2O5-TeO2 cam sisteminin radyasyondan korunma özelliklerinin MCNP5 kodu kullanılarak araştırılması, Kristal Olmayan Katılar Dergisi , 499 , 32-40.
  • Kouhara, Y., Yoshida, M., Takei, T., Iwasaki, H., Takemiya, T., Hatate, Y., ... & Mizuta, K. (2008). Application of lead-free vanadium sealing glasses to the flat fluorescence lump, Kagaku Kogaku Ronbunshu, 34(2), 287-290.
  • Zakaly, H. M., Saudi, H. A., Issa, S. A., Rashad, M., Elazaka, A. I., Tekin, H. O., & Saddeek, Y. B. (2021). Alteration of optical, structural, mechanical durability and nuclear radiation attenuation properties of barium borosilicate glasses through BaO reinforcement: Experimental and numerical analyses, Ceramics International, 47(4), 5587-5596.
  • Issa, S. A., Zakaly, H. M., Tekin, H. O., Saudi, H. A., Badawi, A., Pyshkina, M., ... & Ene, A. (2021). Exploring the FTIR, optical and nuclear radiation shielding properties of samarium-borate glass: a characterization through experimental and simulation methods, Nanomaterials, 11(7), 1713.
  • El-Nahal, M. A., Elsafi, M., Sayyed, M. I., Khandaker, M. U., Osman, H., Elesawy, B. H., ... & Abbas, M. I. (2021). Understanding the effect of introducing micro-and nanoparticle bismuth oxide (Bi2O3) on the gamma ray shielding performance of novel concrete. Materials, 14(21), 6487.
  • Aktas, B., Acikgoz, A., Yilmaz, D., Yalcin, S., Dogru, K., & Yorulmaz, N. (2022). The role of TeO2 insertion on the radiation shielding, structural and physical properties of borosilicate glasses. Journal of Nuclear Materials, 563, 153619.
  • Al-Ghamdi, H., Elsafi, M., Sayyed, M. I., Almuqrin, A. H., & Tamayo, P. (2022). Performance of newly developed concretes incorporating WO3 and barite as radiation shielding material. Journal of Materials Research and Technology, 19, 4103-4114.
  • Gashti, M. F., Mousavinejad, S. H. G., & Khaleghi, S. J. (2023). Evaluation of gamma and neutron radiation shielding properties of the GGBFS based geopolymer concrete. Construction and Building Materials, 367, 130308.
  • Khan, M. N. A., Yaqub, M., & Malik, A. H. (2022). High density concrete incorporating grit scale aggregates for 4th generation nuclear power plants. Construction and Building Materials, 337, 127578.
  • Alzahrani, J.S., Alrowaili, Z.A., Alqahtani, M.S. et al. Influence of Alkaline Earth Metals on the Optical Properties and Radiation-Shielding Effectiveness of Sm3+-Doped Zinc Borophosphate Glasses. J. Electron. Mater. 52, 7794–7806 (2023).
  • UmashankaraRaja, R., Manjunatha, H.C., Vidya, Y.S. et al. Effect of chromium substitution on the gamma and neutron radiation shielding properties of calcium hexaferrite nanoparticles. Appl. Phys. A 129, 709 (2023).
  • Hesham M.H. Zakaly, Islam M. Nabil, Shams A.M. Issa, N. Almousa, Z.Y. Khattari, Y.S. Rammah, Probing the elasticity and radiation protection potential of neodymium(III) doped zinc and niobium tellurite glasses: An integrated simulated and applied physics perspective, Materials Today Communications, Volume 37, 2023.
  • M.S. AlBuriahi, H.H. Hegazy, Faisal Alresheedi, I.O. Olarinoye, H. Algarni, H.O. Tekin, H.A. Saudi, Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses,Ceramics International,Volume 47, Issue 5, 2021.
  • Alsaab, A. H., & Zeghib, S. (2023). Study of Prepared Lead-Free Polymer Nanocomposites for X-and Gamma-ray Shielding in Healthcare Applications. Polymers, 15(9), 2142.
  • More, C. V., Alsayed, Z., Badawi, M. S., Thabet, A. A., & Pawar, P. P. (2021). Polymeric composite materials for radiation shielding: a review. Environmental chemistry letters, 19, 2057-2090.
  • Alshahri, S., Alsuhybani, M., Alosime, E., Almurayshid, M., Alrwais, A., & Alotaibi, S. (2021). LDPE/bismuth oxide nanocomposite: Preparation, characterization and application in X-ray shielding. Polymers, 13(18), 3081.
  • Kumar, K., & Davim, J. P. (Eds.). (2018). Composites and advanced materials for industrial applications. IGI Global.
  • Chang, L., Zhang, Y., Liu, Y., Fang, J., Luan, W., Yang, X., & Zhang, W. (2015). Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 356, 88-93.
  • Mohamed A. Saafan, Zeinab A. Etman, Abdelrahman S. Jaballah, Mohamed A. Abdelati, Strength and nuclear shielding performance of heavyweight concrete experimental and theoretical analysis using WinXCOM program, Progress in Nuclear Energy, Volume 160, 2023.
  • Basha, B., Alsufyani, S. J., Olarinoye, I. O., Alrowaili, Z. A., Sadeq, M. S., Misbah, M. H., ... & Al-Buriahi, M. S. (2023). Synthesis, physical, optical, and radiation attenuation efficiency of Bi2O3+ SrF2+ Li2O glass system. Journal of Radiation Research and Applied Sciences, 16(4), 100676.
  • Khan, S. U. D., Khan, S. U. D., Almutairi, Z., Haider, S., & Ali, S. M. (2020). Development of theoretical-computational model for radiation shielding. Journal of Radiation Research and Applied Sciences, 13(1), 606-615.
  • Knoll, G.F. (2010) Radiation Detection and Measurement. 4th Edition, Wiley, Hoboken, 217.
  • Muhammad, N. A., Armynah, B., & Tahir, D. (2022). High transparent wood composite for effective X-ray shielding applications. Materials Research Bulletin, 154, 111930.
  • Sayyed, M. I. (2017). Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. Journal of Alloys and Compounds, 695, 3191-3197.
  • El-Sayed A. Waly, Michael A. Fusco, Mohamed A. Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials, Annals of Nuclear Energy, Volume 96, 2016, Pages 26-30.
  • Almurayshid, M., Alsagabi, S., Alssalim, Y., Alotaibi, Z., & Almsalam, R. (2021). Feasibility of polymer-based composite materials as radiation shield. Radiation Physics and Chemistry, 183, 109425.
  • Islam, S., Mahmoud, K. A., Sayyed, M. I., Alim, B., Rahman, M. M., & Mollah, A. S. (2020). Study on the radiation attenuation properties of locally available bees-wax as a tissue equivalent bolus material in radiotherapy. Radiation Physics and Chemistry, 172, 108559.
  • Al-Hadeethi, Y., Sayyed, M. I., Mohammed, H., & Rimondini, L. (2020). X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies. Ceramics International, 46(1), 251-257.
  • Akman F., Durak R., Turhan MF., Kaçal M.R., 2015. Studies on effective atomic numbers,electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Applied Radiation and Isotopes, 101: 10.
  • Mahmoud, K. A., Tashlykov, O. L., El Wakil, A. F., Zakaly, H. M., & El Aassy, I. E. (2019, December). Investigation of radiation shielding properties for some building materials reinforced by basalt powder. In AIP Conference Proceedings (Vol. 2174, No. 1).
  • Application of the MCNP5 code to simulate the shielding features of concrete samples with different aggregates, Radiation Physics and Chemistry, Volume 174, 2020.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Nuclear Physics, Radiophysics, Nuclear and Plasma Physics (Other)
Journal Section Research Articles
Authors

İlhami Erkoyuncu 0000-0003-1639-5062

Early Pub Date December 14, 2023
Publication Date December 15, 2023
Submission Date November 3, 2023
Acceptance Date November 25, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Erkoyuncu, İ. (2023). Bazı Minerallerin Radyasyon Zırhlama Kapasitelerinin Araştırılması. Bingöl Üniversitesi Teknik Bilimler Dergisi, 4(2), 8-18.
AMA Erkoyuncu İ. Bazı Minerallerin Radyasyon Zırhlama Kapasitelerinin Araştırılması. BUTS. December 2023;4(2):8-18.
Chicago Erkoyuncu, İlhami. “Bazı Minerallerin Radyasyon Zırhlama Kapasitelerinin Araştırılması”. Bingöl Üniversitesi Teknik Bilimler Dergisi 4, no. 2 (December 2023): 8-18.
EndNote Erkoyuncu İ (December 1, 2023) Bazı Minerallerin Radyasyon Zırhlama Kapasitelerinin Araştırılması. Bingöl Üniversitesi Teknik Bilimler Dergisi 4 2 8–18.
IEEE İ. Erkoyuncu, “Bazı Minerallerin Radyasyon Zırhlama Kapasitelerinin Araştırılması”, BUTS, vol. 4, no. 2, pp. 8–18, 2023.
ISNAD Erkoyuncu, İlhami. “Bazı Minerallerin Radyasyon Zırhlama Kapasitelerinin Araştırılması”. Bingöl Üniversitesi Teknik Bilimler Dergisi 4/2 (December 2023), 8-18.
JAMA Erkoyuncu İ. Bazı Minerallerin Radyasyon Zırhlama Kapasitelerinin Araştırılması. BUTS. 2023;4:8–18.
MLA Erkoyuncu, İlhami. “Bazı Minerallerin Radyasyon Zırhlama Kapasitelerinin Araştırılması”. Bingöl Üniversitesi Teknik Bilimler Dergisi, vol. 4, no. 2, 2023, pp. 8-18.
Vancouver Erkoyuncu İ. Bazı Minerallerin Radyasyon Zırhlama Kapasitelerinin Araştırılması. BUTS. 2023;4(2):8-18.
This journal is prepared and published by the Bingöl University Technical Sciences journal team.