Research Article
BibTex RIS Cite

Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces

Year 2022, , 161 - 169, 30.12.2022
https://doi.org/10.33434/cams.1171815

Abstract

The aim of this paper is to classify $(k,\mu)$-paracontact metric spaces satisfying certain curvature conditions. We present the curvature tensors of (k,$\mu $)-Paracontact manifold satisfying the conditions $R\cdot W_{6}=0$, $ R\cdot W_{7}=0$, $R\cdot W_{8}=0$ and $R\cdot W_{9}=0$. According these cases, $(k,\mu)$-Paracontact manifolds have been characterized. Also, several results are obtained.

References

  • [1] D. V. Aleekseevski, C. Medori, A. Tomassini, Maximally homogeneous para-CR manifolds, Ann. Glob. Anal. Geom., 30 (2006), 1-27.
  • [2] M. Atc¸eken, P. Uygun, Characterizations for totally geodesic submanifolds of (k;m)-paracontact metric manifolds, Korcan J. Math., 28(2020), 555-571.
  • [3] G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55 (2011), 697-718.
  • [4] B. Cappelletti-Montano, I. K¨upeli Erken, C. Murathan, Nullity conditions in paracontact geometry, Differential Geom. Appl., 30 (2012), 665-693.
  • [5] S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187.
  • [6] B. O. Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
  • [7] G. P. Pokhariyal, Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci., 5 (1) (1982), 133-139.
  • [8] M. M. Tripathi, P. Gupta, T􀀀curvature tensor on a semi-Riemannian manifold, 4 (1) (2011), 117-129.
  • [9] P. Uygun, M. Atc¸eken, On (k;m)-paracontact metricspaces satisfying some conditions on theW? 0 􀀀 curvature tensor, New Trend Math. Sci., 9 (2) (2021), 26-37.
  • [10] P. Uygun, S. Dirik, M. Atc¸eken, T. Mert, The geometry of invariant submanifolds of a (k;m)-paracontact metric manifold, Int. J. Eng. Technol., 84 (1) (2022), 355-363.
  • [11] P. Uygun, S. Dirik, M. Atc¸eken, T. Mert, Some characterizations invariant submanifolds of a (k;m)-paracontact space, Journal of Engineering and Research and Applied Science, 11 (1), (2022), 1967-1972.
  • [12] V. Venkatesha, S. Basavarajappa, Invariant submanifolds of LP-Sasakian manifolds, Khayyam J. Math., 6 (1) (2020), 16-26.
  • [13] V. Venkatesha, S. Basavarajappa,W2-Curvature tensor on generalized sasakian space forms, Cubo A Mathematical Journal, 20(1) (2018), 17-29.
  • [14] K. Yano, M. Kon, Structures Manifolds, Singapore, World Scientific, 1984.
  • [15] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36 (2009), 37-60.
  • [16] S. Zamkovoy, V. Tzanov, Non-existence of flat paracontact metric structures in dimension greater than or equal to five, Annuaire Univ. Sofia Fac. Math. Inform., 100 (2011), 27-34.
Year 2022, , 161 - 169, 30.12.2022
https://doi.org/10.33434/cams.1171815

Abstract

References

  • [1] D. V. Aleekseevski, C. Medori, A. Tomassini, Maximally homogeneous para-CR manifolds, Ann. Glob. Anal. Geom., 30 (2006), 1-27.
  • [2] M. Atc¸eken, P. Uygun, Characterizations for totally geodesic submanifolds of (k;m)-paracontact metric manifolds, Korcan J. Math., 28(2020), 555-571.
  • [3] G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55 (2011), 697-718.
  • [4] B. Cappelletti-Montano, I. K¨upeli Erken, C. Murathan, Nullity conditions in paracontact geometry, Differential Geom. Appl., 30 (2012), 665-693.
  • [5] S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187.
  • [6] B. O. Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
  • [7] G. P. Pokhariyal, Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci., 5 (1) (1982), 133-139.
  • [8] M. M. Tripathi, P. Gupta, T􀀀curvature tensor on a semi-Riemannian manifold, 4 (1) (2011), 117-129.
  • [9] P. Uygun, M. Atc¸eken, On (k;m)-paracontact metricspaces satisfying some conditions on theW? 0 􀀀 curvature tensor, New Trend Math. Sci., 9 (2) (2021), 26-37.
  • [10] P. Uygun, S. Dirik, M. Atc¸eken, T. Mert, The geometry of invariant submanifolds of a (k;m)-paracontact metric manifold, Int. J. Eng. Technol., 84 (1) (2022), 355-363.
  • [11] P. Uygun, S. Dirik, M. Atc¸eken, T. Mert, Some characterizations invariant submanifolds of a (k;m)-paracontact space, Journal of Engineering and Research and Applied Science, 11 (1), (2022), 1967-1972.
  • [12] V. Venkatesha, S. Basavarajappa, Invariant submanifolds of LP-Sasakian manifolds, Khayyam J. Math., 6 (1) (2020), 16-26.
  • [13] V. Venkatesha, S. Basavarajappa,W2-Curvature tensor on generalized sasakian space forms, Cubo A Mathematical Journal, 20(1) (2018), 17-29.
  • [14] K. Yano, M. Kon, Structures Manifolds, Singapore, World Scientific, 1984.
  • [15] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36 (2009), 37-60.
  • [16] S. Zamkovoy, V. Tzanov, Non-existence of flat paracontact metric structures in dimension greater than or equal to five, Annuaire Univ. Sofia Fac. Math. Inform., 100 (2011), 27-34.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Pakize Uygun

Süleyman Dirik 0000-0001-9093-1607

Mehmet Atçeken 0000-0002-1242-4359

Tuğba Mert 0000-0001-8258-8298

Publication Date December 30, 2022
Submission Date September 6, 2022
Acceptance Date November 15, 2022
Published in Issue Year 2022

Cite

APA Uygun, P., Dirik, S., Atçeken, M., Mert, T. (2022). Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces. Communications in Advanced Mathematical Sciences, 5(4), 161-169. https://doi.org/10.33434/cams.1171815
AMA Uygun P, Dirik S, Atçeken M, Mert T. Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces. Communications in Advanced Mathematical Sciences. December 2022;5(4):161-169. doi:10.33434/cams.1171815
Chicago Uygun, Pakize, Süleyman Dirik, Mehmet Atçeken, and Tuğba Mert. “Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces”. Communications in Advanced Mathematical Sciences 5, no. 4 (December 2022): 161-69. https://doi.org/10.33434/cams.1171815.
EndNote Uygun P, Dirik S, Atçeken M, Mert T (December 1, 2022) Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces. Communications in Advanced Mathematical Sciences 5 4 161–169.
IEEE P. Uygun, S. Dirik, M. Atçeken, and T. Mert, “Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces”, Communications in Advanced Mathematical Sciences, vol. 5, no. 4, pp. 161–169, 2022, doi: 10.33434/cams.1171815.
ISNAD Uygun, Pakize et al. “Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces”. Communications in Advanced Mathematical Sciences 5/4 (December 2022), 161-169. https://doi.org/10.33434/cams.1171815.
JAMA Uygun P, Dirik S, Atçeken M, Mert T. Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces. Communications in Advanced Mathematical Sciences. 2022;5:161–169.
MLA Uygun, Pakize et al. “Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces”. Communications in Advanced Mathematical Sciences, vol. 5, no. 4, 2022, pp. 161-9, doi:10.33434/cams.1171815.
Vancouver Uygun P, Dirik S, Atçeken M, Mert T. Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces. Communications in Advanced Mathematical Sciences. 2022;5(4):161-9.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..