Research Article
BibTex RIS Cite

Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators

Year 2019, Volume: 2 Issue: 2, 129 - 134, 27.06.2019
https://doi.org/10.33434/cams.508305

Abstract

Let $A$ and $B$ be linear operators on a Hilbert space. Let $A$ and $A+B$ generate $C_0$-semigroups $e^{tA}$ and $e^{t(A+B)}$, respectively, and $e^{tA}$ be exponentially stable. We establish exponential stability conditions for $e^{t(A+B)}$ in terms of the commutator $AB-BA$, assuming that it has a bounded extension. Besides, $B$ can be unbounded.

References

  • [1] R. Curtain, H. Zwart, Introduction to Infinite-Dimensional Systems Theory, Springer, New York, 1995.
  • [2] T. Eisner, Stability of Operators and Operator Semigroups, Operator Theory: Advances and Applications, Vol. 209, Birkhauser Verlag, Basel, 2010.
  • [3] A. Batkai, K.-J. Engel, J. Pruus, R. Schnaubelt, Polynomial stability of operator semigroups, Math. Nachr., 279 (13-14) (2006), 1425-1440.
  • [4] C.J.K. Batty, T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780.
  • [5] C. Buse, A. Khan, G. Rahmat, O. Saierli, Weak real integral characterizations for exponential stability of semigroups in reflexive spaces, Semigr. Forum, 88 (2014), 195-204.
  • [6] C. Buse, C. Niculescu, A condition of uniform exponential stability for semigroups, Math. Inequal. Appl. 11(3) (2008), 529-536.
  • [7] R. Heymann, Eigenvalues and stability properties of multiplication operators and multiplication semigroups, Math. Nachr., 287(5-6) (2014), 574-584.
  • [8] L. Maniar, S.Nafiri, Approximation and uniform polynomial stability of C0-semigroups, ESAIM Control Optim. Calc. Var., 22(1) (2016), 208-235.
  • [9] L. Paunonen, H. Zwart, A Lyapunov approach to strong stability of semigroups, Syst. & Control Let., 62 (2013), 673-678.
  • [10] C. Preda, P. Preda, Lyapunov operator inequalities for exponential stability of Banach space semigroups of operators, Appl. Math. Let., 25 (2012), 401-403.
  • [11] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.
  • [12] M.I. Gil’, Semigroups of sums of two operators with small commutators, Semigroup Forum, 98(1) (2019), 22-30.
  • [13] S.G. Krein, Linear Equations in a Banach Space, Amer. Math. Soc., Providence, R.I, 1971.
  • [14] M.I. Gil’, Stability of sums of operators, Ann. Univ. Ferrara, 62 (2016), 61-70.
Year 2019, Volume: 2 Issue: 2, 129 - 134, 27.06.2019
https://doi.org/10.33434/cams.508305

Abstract

References

  • [1] R. Curtain, H. Zwart, Introduction to Infinite-Dimensional Systems Theory, Springer, New York, 1995.
  • [2] T. Eisner, Stability of Operators and Operator Semigroups, Operator Theory: Advances and Applications, Vol. 209, Birkhauser Verlag, Basel, 2010.
  • [3] A. Batkai, K.-J. Engel, J. Pruus, R. Schnaubelt, Polynomial stability of operator semigroups, Math. Nachr., 279 (13-14) (2006), 1425-1440.
  • [4] C.J.K. Batty, T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780.
  • [5] C. Buse, A. Khan, G. Rahmat, O. Saierli, Weak real integral characterizations for exponential stability of semigroups in reflexive spaces, Semigr. Forum, 88 (2014), 195-204.
  • [6] C. Buse, C. Niculescu, A condition of uniform exponential stability for semigroups, Math. Inequal. Appl. 11(3) (2008), 529-536.
  • [7] R. Heymann, Eigenvalues and stability properties of multiplication operators and multiplication semigroups, Math. Nachr., 287(5-6) (2014), 574-584.
  • [8] L. Maniar, S.Nafiri, Approximation and uniform polynomial stability of C0-semigroups, ESAIM Control Optim. Calc. Var., 22(1) (2016), 208-235.
  • [9] L. Paunonen, H. Zwart, A Lyapunov approach to strong stability of semigroups, Syst. & Control Let., 62 (2013), 673-678.
  • [10] C. Preda, P. Preda, Lyapunov operator inequalities for exponential stability of Banach space semigroups of operators, Appl. Math. Let., 25 (2012), 401-403.
  • [11] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.
  • [12] M.I. Gil’, Semigroups of sums of two operators with small commutators, Semigroup Forum, 98(1) (2019), 22-30.
  • [13] S.G. Krein, Linear Equations in a Banach Space, Amer. Math. Soc., Providence, R.I, 1971.
  • [14] M.I. Gil’, Stability of sums of operators, Ann. Univ. Ferrara, 62 (2016), 61-70.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Michael Gil' 0000-0002-6404-9618

Publication Date June 27, 2019
Submission Date January 4, 2019
Acceptance Date April 24, 2019
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Gil’, M. (2019). Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators. Communications in Advanced Mathematical Sciences, 2(2), 129-134. https://doi.org/10.33434/cams.508305
AMA Gil’ M. Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators. Communications in Advanced Mathematical Sciences. June 2019;2(2):129-134. doi:10.33434/cams.508305
Chicago Gil’, Michael. “Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators”. Communications in Advanced Mathematical Sciences 2, no. 2 (June 2019): 129-34. https://doi.org/10.33434/cams.508305.
EndNote Gil’ M (June 1, 2019) Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators. Communications in Advanced Mathematical Sciences 2 2 129–134.
IEEE M. Gil’, “Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators”, Communications in Advanced Mathematical Sciences, vol. 2, no. 2, pp. 129–134, 2019, doi: 10.33434/cams.508305.
ISNAD Gil’, Michael. “Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators”. Communications in Advanced Mathematical Sciences 2/2 (June 2019), 129-134. https://doi.org/10.33434/cams.508305.
JAMA Gil’ M. Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators. Communications in Advanced Mathematical Sciences. 2019;2:129–134.
MLA Gil’, Michael. “Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators”. Communications in Advanced Mathematical Sciences, vol. 2, no. 2, 2019, pp. 129-34, doi:10.33434/cams.508305.
Vancouver Gil’ M. Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators. Communications in Advanced Mathematical Sciences. 2019;2(2):129-34.

Cited By

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..