Some New Results in Partial Cone $b$-Metric Space
Year 2020,
Volume: 3 Issue: 2, 67 - 73, 30.06.2020
Zeynep Kalkan
,
Aynur Şahin
Abstract
In this paper, we introduce the concepts of the Ulam-Hyers-Rassias stability and the limit shadowing property of a fixed point problem and the $P$-property of a mapping in partial cone $b$-metric space. Also, we give such results by using the mapping which is studied by Fernandez et al.[4] in partial cone $b$-metric space and provide some numerical examples to support our results. The results presented here extend and improve some recent results announced in the current literature.
Thanks
The authors would like to thank Prof. Metin Başarır for his valuable suggestions to improve the content of the manuscript.
References
- [1] S. Czerwik, Contraction mapping in b-metric space, Acta Math. Inform. Univ. Ostrav, 1 (1993), 5-11.
- [2] N. Hussain, M. H. Shah, KKM mapping in cone b-metric spaces, Computer Math. Appl., 62 (2011), 1677-1687.
- [3] A. Sönmez, Fixed point theorems in partial cone metric spaces, (2011), arXiv:1101.2741v1 [math. GN].
- [4] J. Fernandez, N. Malviya, B. Fisher, The asymptotically regularity and sequences in partial cone b-metric spaces with
application, Filomat, 30(10) (2016), 2749-2760.
- [5] S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, USA, 1964.
- [6] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA., 27 (1941), 222-224.
- [7] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan., 2 (1950), 64-66.
- [8] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 237-300.
- [9] I. A. Rus, Ulam stabilities of ordinary differential equation in a Banach space, Carpathian J. Math., 26(1) (2010), 103-107.
- [10] L. Cadariu, L. Gavruta, P. Gavruta, Fixed points and generalized Hyers-Ulam stability, Abstr. Appl. Anal., 2012 (2012),
Article ID 712743, 10 pages.
- [11] L. P. Castro, R. C. Guerra, Hyers-Ulam-Rassias stability of Volterra integral equation within weighted spaces, Libertas
Math. (new series), 33(2) (2013), 21-35.
- [12] W. Sintunavarat, Generalized Ulam-Hyers stability, well-posedness and limit shadowing of the fixed point problems for
$\alpha -\beta -$contraction mapping in metric space, Sci.World. J., 2014 (2014), Article ID 569174, 7 pages.
- [13] A. Şahin, H. Arısoy, Z. Kalkan, On the stability of two functional equations arising in mathematical biology and theory of
learning, Creat. Math. Inform., 28(1) (2019), 91-95.
- [14] S. Y. Pilyugin, Sets of dynamical systems with various limit shadowing properties, J. Dynam. Differantial Equations, 19(3)
(2007), 747-775.
- [15] G. S. Jeong, B. E. Rhoades, Maps for which $F(T)=F(T^{n})$}, Fixed Point Theory Appl. 6 71-105, Nova Sci. Publ. New
York, USA, 2007.
- [16] G. S. Jeong, B. E. Rhoades, More maps for which $F(T)=F(T^{n})$}, Demonstratio Math., 40(3) (2007), 671-680.
- [17] B. E. Rhoades, M. Abbas, Maps satisfying generalized contractive conditions of integral type for which $F(T)=F(T^{n})$},
Int. J. Pure Appl. Math. 45(2) (2008), 225-231.
- [18] H. Huang, G. Deng, S. Radenovic, Fixed point theorems in $b$-metric spaces with applications to differential equation, J.
Fixed Point Theory Appl., 20(52) (2018), 1-24.
Year 2020,
Volume: 3 Issue: 2, 67 - 73, 30.06.2020
Zeynep Kalkan
,
Aynur Şahin
References
- [1] S. Czerwik, Contraction mapping in b-metric space, Acta Math. Inform. Univ. Ostrav, 1 (1993), 5-11.
- [2] N. Hussain, M. H. Shah, KKM mapping in cone b-metric spaces, Computer Math. Appl., 62 (2011), 1677-1687.
- [3] A. Sönmez, Fixed point theorems in partial cone metric spaces, (2011), arXiv:1101.2741v1 [math. GN].
- [4] J. Fernandez, N. Malviya, B. Fisher, The asymptotically regularity and sequences in partial cone b-metric spaces with
application, Filomat, 30(10) (2016), 2749-2760.
- [5] S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, USA, 1964.
- [6] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA., 27 (1941), 222-224.
- [7] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan., 2 (1950), 64-66.
- [8] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 237-300.
- [9] I. A. Rus, Ulam stabilities of ordinary differential equation in a Banach space, Carpathian J. Math., 26(1) (2010), 103-107.
- [10] L. Cadariu, L. Gavruta, P. Gavruta, Fixed points and generalized Hyers-Ulam stability, Abstr. Appl. Anal., 2012 (2012),
Article ID 712743, 10 pages.
- [11] L. P. Castro, R. C. Guerra, Hyers-Ulam-Rassias stability of Volterra integral equation within weighted spaces, Libertas
Math. (new series), 33(2) (2013), 21-35.
- [12] W. Sintunavarat, Generalized Ulam-Hyers stability, well-posedness and limit shadowing of the fixed point problems for
$\alpha -\beta -$contraction mapping in metric space, Sci.World. J., 2014 (2014), Article ID 569174, 7 pages.
- [13] A. Şahin, H. Arısoy, Z. Kalkan, On the stability of two functional equations arising in mathematical biology and theory of
learning, Creat. Math. Inform., 28(1) (2019), 91-95.
- [14] S. Y. Pilyugin, Sets of dynamical systems with various limit shadowing properties, J. Dynam. Differantial Equations, 19(3)
(2007), 747-775.
- [15] G. S. Jeong, B. E. Rhoades, Maps for which $F(T)=F(T^{n})$}, Fixed Point Theory Appl. 6 71-105, Nova Sci. Publ. New
York, USA, 2007.
- [16] G. S. Jeong, B. E. Rhoades, More maps for which $F(T)=F(T^{n})$}, Demonstratio Math., 40(3) (2007), 671-680.
- [17] B. E. Rhoades, M. Abbas, Maps satisfying generalized contractive conditions of integral type for which $F(T)=F(T^{n})$},
Int. J. Pure Appl. Math. 45(2) (2008), 225-231.
- [18] H. Huang, G. Deng, S. Radenovic, Fixed point theorems in $b$-metric spaces with applications to differential equation, J.
Fixed Point Theory Appl., 20(52) (2018), 1-24.