Research Article
BibTex RIS Cite

A Study on Some Multi-Valued Interpolative Contractions

Year 2020, Volume: 3 Issue: 4, 208 - 217, 22.12.2020
https://doi.org/10.33434/cams.794172

Abstract

In the present study, we introduce a new approach to interpolative mappings in fixed point theory by combining the ideas of Nadler [1], Karapınar et. al. [2,3], Jleli and Samet [4]. We introduce some fixed point theorems for interpolative single and multi-valued Kannan type and Reich Rus Ciric type $\theta$-contractive mappings on complete metric spaces and prove some fixed point results for these mappings. These results extend the main results of many comparable results from the current literature. Also, we give an example to show that our main theorems are applicable.

References

  • [1] S.B. Nadler, Multivalued contraction mappings, Pacific Journal of Mathematics, 30 (1969), 475-488.
  • [2] E. Karapınar, Revisiting the Kannan type contractions via interpolation, Advances in the Theory of Nonlinear Analysis and its Applications, 2 (2018), 85-87.
  • [3] E. Karapınar, R.P. Agarwal, H. Aydi, Interpolative Reich-Rus-Ciric Type Contractions on Partial Metric Spaces, Mathematics, 6(11) (2018), 256.
  • [4] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, Journal of Inequalities and Applications, 38 (2014), 1-8.
  • [5] S. Banach, Sur les operations dans les ensembles abstracits et leur application aux equations integrales, Fund. Math., 3 (1922), 133-181.
  • [6] R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc., 60 (1968), 71-76.
  • [7] S. Reich, Fixed point of contractive functions, Boll. Unione Mat. Ital., 5 (1972), 26-42.
  • [8] L. B. Ciric, Generalized contractions and fixed point theorems, Publ. Inst. Math. (Beograd)(NS), 12 (1971), 19-26.
  • [9] S. Reich, Some remarks concerning contraction mappings, Canadian Mathematical Bulletin, 14 (1971), 121–124.
  • [10] L.B, Ciric, On contraction type mappings, Math. Balk., 1 (1971), 52-57.
  • [11] L.B, Ciric, Generalized contractions and fixed point theorems, Publ. Inst. Math. (Belgr.), 12 (1971), 19-26.
  • [12] S. Reich, Kannan’s fixed point theorem, Boll. Unione Mat. Ital., 4 (1971), 1–11.
  • [13] I.A. Rus, Principles and applications of the fixed point theory, Editura Dacia, Clui-Napoca, Romania, (1979).
  • [14] I.A. Rus, Generalized contractions and applications; Cluj University Press: Clui-Napoca, Romania, (2001).
  • [15] H. A. Hançer, G. Mınak, I. Altun, On a broad category of multivalued weakly Picard operators, Fixed point theory, 18 (2017) 229-236.
Year 2020, Volume: 3 Issue: 4, 208 - 217, 22.12.2020
https://doi.org/10.33434/cams.794172

Abstract

References

  • [1] S.B. Nadler, Multivalued contraction mappings, Pacific Journal of Mathematics, 30 (1969), 475-488.
  • [2] E. Karapınar, Revisiting the Kannan type contractions via interpolation, Advances in the Theory of Nonlinear Analysis and its Applications, 2 (2018), 85-87.
  • [3] E. Karapınar, R.P. Agarwal, H. Aydi, Interpolative Reich-Rus-Ciric Type Contractions on Partial Metric Spaces, Mathematics, 6(11) (2018), 256.
  • [4] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, Journal of Inequalities and Applications, 38 (2014), 1-8.
  • [5] S. Banach, Sur les operations dans les ensembles abstracits et leur application aux equations integrales, Fund. Math., 3 (1922), 133-181.
  • [6] R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc., 60 (1968), 71-76.
  • [7] S. Reich, Fixed point of contractive functions, Boll. Unione Mat. Ital., 5 (1972), 26-42.
  • [8] L. B. Ciric, Generalized contractions and fixed point theorems, Publ. Inst. Math. (Beograd)(NS), 12 (1971), 19-26.
  • [9] S. Reich, Some remarks concerning contraction mappings, Canadian Mathematical Bulletin, 14 (1971), 121–124.
  • [10] L.B, Ciric, On contraction type mappings, Math. Balk., 1 (1971), 52-57.
  • [11] L.B, Ciric, Generalized contractions and fixed point theorems, Publ. Inst. Math. (Belgr.), 12 (1971), 19-26.
  • [12] S. Reich, Kannan’s fixed point theorem, Boll. Unione Mat. Ital., 4 (1971), 1–11.
  • [13] I.A. Rus, Principles and applications of the fixed point theory, Editura Dacia, Clui-Napoca, Romania, (1979).
  • [14] I.A. Rus, Generalized contractions and applications; Cluj University Press: Clui-Napoca, Romania, (2001).
  • [15] H. A. Hançer, G. Mınak, I. Altun, On a broad category of multivalued weakly Picard operators, Fixed point theory, 18 (2017) 229-236.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Seher Sultan Yeşilkaya 0000-0002-1748-2398

Cafer Aydın 0000-0002-3707-5837

Yaşar Aslan

Publication Date December 22, 2020
Submission Date September 12, 2020
Acceptance Date December 15, 2020
Published in Issue Year 2020 Volume: 3 Issue: 4

Cite

APA Yeşilkaya, S. S., Aydın, C., & Aslan, Y. (2020). A Study on Some Multi-Valued Interpolative Contractions. Communications in Advanced Mathematical Sciences, 3(4), 208-217. https://doi.org/10.33434/cams.794172
AMA Yeşilkaya SS, Aydın C, Aslan Y. A Study on Some Multi-Valued Interpolative Contractions. Communications in Advanced Mathematical Sciences. December 2020;3(4):208-217. doi:10.33434/cams.794172
Chicago Yeşilkaya, Seher Sultan, Cafer Aydın, and Yaşar Aslan. “A Study on Some Multi-Valued Interpolative Contractions”. Communications in Advanced Mathematical Sciences 3, no. 4 (December 2020): 208-17. https://doi.org/10.33434/cams.794172.
EndNote Yeşilkaya SS, Aydın C, Aslan Y (December 1, 2020) A Study on Some Multi-Valued Interpolative Contractions. Communications in Advanced Mathematical Sciences 3 4 208–217.
IEEE S. S. Yeşilkaya, C. Aydın, and Y. Aslan, “A Study on Some Multi-Valued Interpolative Contractions”, Communications in Advanced Mathematical Sciences, vol. 3, no. 4, pp. 208–217, 2020, doi: 10.33434/cams.794172.
ISNAD Yeşilkaya, Seher Sultan et al. “A Study on Some Multi-Valued Interpolative Contractions”. Communications in Advanced Mathematical Sciences 3/4 (December 2020), 208-217. https://doi.org/10.33434/cams.794172.
JAMA Yeşilkaya SS, Aydın C, Aslan Y. A Study on Some Multi-Valued Interpolative Contractions. Communications in Advanced Mathematical Sciences. 2020;3:208–217.
MLA Yeşilkaya, Seher Sultan et al. “A Study on Some Multi-Valued Interpolative Contractions”. Communications in Advanced Mathematical Sciences, vol. 3, no. 4, 2020, pp. 208-17, doi:10.33434/cams.794172.
Vancouver Yeşilkaya SS, Aydın C, Aslan Y. A Study on Some Multi-Valued Interpolative Contractions. Communications in Advanced Mathematical Sciences. 2020;3(4):208-17.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..