Research Article
BibTex RIS Cite

A study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of $p$-Absolutely Summable Sequences

Year 2021, Volume: 4 Issue: 1, 14 - 25, 29.03.2021

Abstract

In this study, a special lower triangular matrix derived by combining Riesz matrix and Euler totient matrix is used to construct new Banach spaces. $\alpha-$,$\beta-$,$\gamma-$duals of the resulting spaces are obtained and some matrix operators are characterized. Finally by the aid of measure of non-compactness, the conditions for which a matrix operator on these spaces is compact are determined.

References

  • [1] B. Altay, F. Basar, M. Mursaleen, On the Euler sequence spaces which include the spaces p and I, Inform. Sci., 176(10) (2006), 1450-1462.
  • [2] F. Bas¸ar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55(1) (2003), 136-147.
  • [3] F. Basar, Summability Theory and Its Applications, Bentham Science Publishers, Istanbul, 2012.
  • [4] M. Ilkhan, Certain geometric properties and matrix transformations on a newly introduced Banach space, Fundam. J. Math. Appl., 3(1) (2020), 45-51.
  • [5] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 2013(38) (2013), 15 pages.
  • [6] M. Kirisci, F. Basar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60 (2010), 1299-1309.
  • [7] M. Kirisci, Riesz type integrated and differentiated sequence spaces, Bull. Math. Anal. Appl., 7(2) (2015), 14-27.
  • [8] S.A. Mohiuddine, A. Alotaibi, Weighted almost convergence and related infinite matrices, J. Inequal. Appl., 2018(15) (2018), 10 pages.
  • [9] M. Mursaleen, A.K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling, 52(3-4) (2010), 603-617.
  • [10] T. Yaying, B. Hazarika, On sequence spaces defined by the domain of a regular Tribonacci matrix, Math. Slovaca, 70(3) (2020), 697-706.
  • [11] P. Zengin Alp, A new paranormed sequence space defined by Catalan conservative matrix, Math. Methods Appl. Sci., doi: https://doi.org/10.1002/mma.6530.
  • [12] T. Yaying, B. Hazarika, On sequence spaces generated by binomial difference operator of fractional order, Math. Slovaca, 69(4) (2019), 901-918.
  • [13] T. Yaying, B. Hazarika, M. Mursaleen, On sequence space derived by the domain of q-Cesaro matrix in `p space and the associated operator ideal, J. Math. Anal. Appl., 493(1) (2021), 124453.
  • [14] T. Yaying, B. Hazarika, S.A. Mohiuddine, M. Mursaleen, K.J. Ansari, Sequence spaces derived by the triple band generalized Fibonacci difference operator, Adv. Diff. Equ., 2020 (2020), 639.
  • [15] T. Yaying, Paranormed Riesz difference sequence spaces of fractional order, Kragujevac J. Math., 46(2) (2022), 175-191.
  • [16] E. Malkowsky, V. Rakocevic, An introduction into the theory of sequence spaces and measure of noncompactness, Zb. Rad. (Beogr.), 17 (2000), 143-234.
  • [17] V. Rakocevic, Measures of noncompactness and some applications, Filomat, 12 (1998), 87-120.
  • [18] M. Basarır, E. E. Kara, On some difference sequence spaces of weighted means and compact operators, Ann. Funct. Anal. 2 (2011), 114-129.
  • [19] M. Basarır, E. E. Kara, On the B-difference sequence space derived by generalized weighted mean and compact operators, J. Math. Anal. Appl. 391 (2012), 67-81.
  • [20] M. Bas¸arır, E. E. Kara, On compact operators on the Riesz Bm-difference sequence spaces II, Iran. J. Sci. Technol. Trans. A Sci., 36 (2012), 371-376.
  • [21] E. E. Kara, M. Basarır, On compact operators and some Euler B(m)-difference sequence spaces, J. Math. Anal. Appl., 379(2) (2011), 499-511.
  • [22] M. Mursaleen, A. K. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal., 73(8) (2010), 2541-2557.
  • [23] M. Mursaleen, A. K. Noman, The Hausdorff measure of noncompactness of matrix operators on some BK spaces, Oper. Matrices, 5 (2011), 473-486.
  • [24] T. Yaying, A. Das, B. Hazarika, P. Baliarsingh, Compactness of binomial difference operator of fractional order and sequence spaces, Rend. Circ. Mat. Palermo (II) Ser., 68 (2019), 459-476.
  • [25] M. Ilkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
  • [26] S. Demiriz, S. Erdem, Domain of Euler-totient matrix operator in the space Lp, Korean J. Math., 28(2) (2020), 361-378.
  • [27] S. Demiriz, M. Ilkhan, E. E. Kara, Almost convergence and Euler totient matrix, Ann. Funct. Anal., 11(3) (2020), 604-616.
  • [28] S. Erdem, S. Demiriz, 4-dimensional Euler-totient matrix operator and some double sequence spaces, Math. Sci. Appl. E-Notes, 8(2) (2020), 110-122.
  • [29] G. C. Hazar Gulec, Merve Ilkhan, A new paranormed series space using Euler totient means and some matrix transformations, Korean J. Math., 28(2) (2020), 205-221.
  • [30] G. C. Hazar Gulec, Merve Ilkhan, A new characterization of absolute summability factors, Commun. Optim. Theory, 2020 (2020), Article ID 15, 1-11.
  • [31] M. Ilkhan, Matrix domain of a regular matrix derived by Euler totient function in the spaces c0 and c, Mediterr. J. Math., 17 (2020), Article number 27.
  • [32] M. Ilkhan, G. C. Hazar Gulec, A study on absolute Euler totient series space and certain matrix transformations, Mugla J. Sci. Technol., 6(1) (2020), 112-119.
  • [33] M. Ilkhan, S. Demiriz, E. E. Kara, A new paranormed sequence space defined by Euler totient matrix, Karaelmas Sci. Eng. J., 9(2) (2019), 277-282.
  • [34] B. Altay, F. Basar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 30(4) (2006), 591-608.
  • [35] M. Stieglitz, H. Tietz, Matrix transformationen von folgenraumen eine ergebnisubersicht, Math. Z., 154 (1977), 1-16.
Year 2021, Volume: 4 Issue: 1, 14 - 25, 29.03.2021

Abstract

References

  • [1] B. Altay, F. Basar, M. Mursaleen, On the Euler sequence spaces which include the spaces p and I, Inform. Sci., 176(10) (2006), 1450-1462.
  • [2] F. Bas¸ar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55(1) (2003), 136-147.
  • [3] F. Basar, Summability Theory and Its Applications, Bentham Science Publishers, Istanbul, 2012.
  • [4] M. Ilkhan, Certain geometric properties and matrix transformations on a newly introduced Banach space, Fundam. J. Math. Appl., 3(1) (2020), 45-51.
  • [5] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 2013(38) (2013), 15 pages.
  • [6] M. Kirisci, F. Basar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60 (2010), 1299-1309.
  • [7] M. Kirisci, Riesz type integrated and differentiated sequence spaces, Bull. Math. Anal. Appl., 7(2) (2015), 14-27.
  • [8] S.A. Mohiuddine, A. Alotaibi, Weighted almost convergence and related infinite matrices, J. Inequal. Appl., 2018(15) (2018), 10 pages.
  • [9] M. Mursaleen, A.K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling, 52(3-4) (2010), 603-617.
  • [10] T. Yaying, B. Hazarika, On sequence spaces defined by the domain of a regular Tribonacci matrix, Math. Slovaca, 70(3) (2020), 697-706.
  • [11] P. Zengin Alp, A new paranormed sequence space defined by Catalan conservative matrix, Math. Methods Appl. Sci., doi: https://doi.org/10.1002/mma.6530.
  • [12] T. Yaying, B. Hazarika, On sequence spaces generated by binomial difference operator of fractional order, Math. Slovaca, 69(4) (2019), 901-918.
  • [13] T. Yaying, B. Hazarika, M. Mursaleen, On sequence space derived by the domain of q-Cesaro matrix in `p space and the associated operator ideal, J. Math. Anal. Appl., 493(1) (2021), 124453.
  • [14] T. Yaying, B. Hazarika, S.A. Mohiuddine, M. Mursaleen, K.J. Ansari, Sequence spaces derived by the triple band generalized Fibonacci difference operator, Adv. Diff. Equ., 2020 (2020), 639.
  • [15] T. Yaying, Paranormed Riesz difference sequence spaces of fractional order, Kragujevac J. Math., 46(2) (2022), 175-191.
  • [16] E. Malkowsky, V. Rakocevic, An introduction into the theory of sequence spaces and measure of noncompactness, Zb. Rad. (Beogr.), 17 (2000), 143-234.
  • [17] V. Rakocevic, Measures of noncompactness and some applications, Filomat, 12 (1998), 87-120.
  • [18] M. Basarır, E. E. Kara, On some difference sequence spaces of weighted means and compact operators, Ann. Funct. Anal. 2 (2011), 114-129.
  • [19] M. Basarır, E. E. Kara, On the B-difference sequence space derived by generalized weighted mean and compact operators, J. Math. Anal. Appl. 391 (2012), 67-81.
  • [20] M. Bas¸arır, E. E. Kara, On compact operators on the Riesz Bm-difference sequence spaces II, Iran. J. Sci. Technol. Trans. A Sci., 36 (2012), 371-376.
  • [21] E. E. Kara, M. Basarır, On compact operators and some Euler B(m)-difference sequence spaces, J. Math. Anal. Appl., 379(2) (2011), 499-511.
  • [22] M. Mursaleen, A. K. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal., 73(8) (2010), 2541-2557.
  • [23] M. Mursaleen, A. K. Noman, The Hausdorff measure of noncompactness of matrix operators on some BK spaces, Oper. Matrices, 5 (2011), 473-486.
  • [24] T. Yaying, A. Das, B. Hazarika, P. Baliarsingh, Compactness of binomial difference operator of fractional order and sequence spaces, Rend. Circ. Mat. Palermo (II) Ser., 68 (2019), 459-476.
  • [25] M. Ilkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
  • [26] S. Demiriz, S. Erdem, Domain of Euler-totient matrix operator in the space Lp, Korean J. Math., 28(2) (2020), 361-378.
  • [27] S. Demiriz, M. Ilkhan, E. E. Kara, Almost convergence and Euler totient matrix, Ann. Funct. Anal., 11(3) (2020), 604-616.
  • [28] S. Erdem, S. Demiriz, 4-dimensional Euler-totient matrix operator and some double sequence spaces, Math. Sci. Appl. E-Notes, 8(2) (2020), 110-122.
  • [29] G. C. Hazar Gulec, Merve Ilkhan, A new paranormed series space using Euler totient means and some matrix transformations, Korean J. Math., 28(2) (2020), 205-221.
  • [30] G. C. Hazar Gulec, Merve Ilkhan, A new characterization of absolute summability factors, Commun. Optim. Theory, 2020 (2020), Article ID 15, 1-11.
  • [31] M. Ilkhan, Matrix domain of a regular matrix derived by Euler totient function in the spaces c0 and c, Mediterr. J. Math., 17 (2020), Article number 27.
  • [32] M. Ilkhan, G. C. Hazar Gulec, A study on absolute Euler totient series space and certain matrix transformations, Mugla J. Sci. Technol., 6(1) (2020), 112-119.
  • [33] M. Ilkhan, S. Demiriz, E. E. Kara, A new paranormed sequence space defined by Euler totient matrix, Karaelmas Sci. Eng. J., 9(2) (2019), 277-282.
  • [34] B. Altay, F. Basar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 30(4) (2006), 591-608.
  • [35] M. Stieglitz, H. Tietz, Matrix transformationen von folgenraumen eine ergebnisubersicht, Math. Z., 154 (1977), 1-16.
There are 35 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Merve İlkhan

Mehmet Akif Bayrakdar

Publication Date March 29, 2021
Submission Date December 22, 2020
Acceptance Date March 12, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA İlkhan, M., & Bayrakdar, M. A. (2021). A study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of $p$-Absolutely Summable Sequences. Communications in Advanced Mathematical Sciences, 4(1), 14-25.
AMA İlkhan M, Bayrakdar MA. A study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of $p$-Absolutely Summable Sequences. Communications in Advanced Mathematical Sciences. March 2021;4(1):14-25.
Chicago İlkhan, Merve, and Mehmet Akif Bayrakdar. “A Study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of $p$-Absolutely Summable Sequences”. Communications in Advanced Mathematical Sciences 4, no. 1 (March 2021): 14-25.
EndNote İlkhan M, Bayrakdar MA (March 1, 2021) A study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of $p$-Absolutely Summable Sequences. Communications in Advanced Mathematical Sciences 4 1 14–25.
IEEE M. İlkhan and M. A. Bayrakdar, “A study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of $p$-Absolutely Summable Sequences”, Communications in Advanced Mathematical Sciences, vol. 4, no. 1, pp. 14–25, 2021.
ISNAD İlkhan, Merve - Bayrakdar, Mehmet Akif. “A Study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of $p$-Absolutely Summable Sequences”. Communications in Advanced Mathematical Sciences 4/1 (March 2021), 14-25.
JAMA İlkhan M, Bayrakdar MA. A study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of $p$-Absolutely Summable Sequences. Communications in Advanced Mathematical Sciences. 2021;4:14–25.
MLA İlkhan, Merve and Mehmet Akif Bayrakdar. “A Study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of $p$-Absolutely Summable Sequences”. Communications in Advanced Mathematical Sciences, vol. 4, no. 1, 2021, pp. 14-25.
Vancouver İlkhan M, Bayrakdar MA. A study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of $p$-Absolutely Summable Sequences. Communications in Advanced Mathematical Sciences. 2021;4(1):14-25.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..