Research Article
BibTex RIS Cite

Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations with Impulses

Year 2023, Volume: 6 Issue: 3, 115 - 127, 17.09.2023
https://doi.org/10.33434/cams.1257750

Abstract

This paper deals with the existence, uniqueness, and Ulam-stability outcomes for $\Xi$-Hilfer fractional fuzzy differential equations with impulse. Further, by using the techniques of nonlinear functional analysis, we study the Ulam-Hyers-Rassias stability.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • [1] M. Benchohra, J.J. Nieto, A. Ouahab, Fuzzy solutions for impulsive differential equations, Commun. Appl. Anal., 11(2007), 379-394.
  • [2] M. Benchohra, J. Henderson, S.L. Ntouyas, Impulsive Differential Equations and Inclusions, New York, Hindawi Publishing Corporation, 2(2006).
  • [3] M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solutions for impulsive fractional differential equations, Commun. Nonlinear. Sci. Numer. Simul., 17(7)(2012), 3050-3060.
  • [4] T.L. Guo, W. Jiang, Impulsive fractional functional differential equations, Comput. Math. Appl., 64(2012), 3414-3424.
  • [5] N.V. Hoa, D. O’Regan, A remark on y-Hilfer fractional differential equations with non-instantaneous impulses, Math. Methods. Appl. Sci., 43(2020), 3354-3368.
  • [6] N.V. Hoa, T.V. An, Fuzzy differential equations with Riemann-Liouville generalized fractional integrable impulses, Fuzzy Sets Syst., 2021.
  • [7] D. Luo, Z. Luo, Existence and Hyers-Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses, Math. Slovaca., 70(5)(2020), 1231-1248.
  • [8] J.V.D.C. Sousa, K.D. Kucche, E.C. de Oliveira, Stability of y-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88(2019), 73-80.
  • [9] J.V.D.C. Sousa, D.D.S. Oliveira, E.C. de Oliveira, On the existence and stability for non-instantaneous impulsive fractional integro-differential equations, Math. Methods. Appl. Sci., 42(2019), 1249-1261.
  • [10] K.M. Furati, M.D. Kassim, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64(6)(2012), 1616-1626.
  • [11] R. Hilfer, Applications of Fractional Calculus in Physics, Singapore, World scientific, 2000.
  • [12] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
  • [13] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
  • [14] J.V.D.C. Sousa, E.C. de Oliveira, On the y-Hilfer fractional derivative, Commun. Nonlinear. Sci. Numer. Simul., 60(2018), 72-91.
  • [15] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy sets syst., 230(2013), 119-141.
  • [16] V. Lakshikantham, R.N. Mohapatra, Theory of fuzzy differential equations and applications, London, CRC Press, 2003.
  • [17] L. Sajedi, N. Eghbali, H. Aydi, Impulsive coupled system of fractional differential equations with Caputo-Katugampola fuzzy fractional derivative, Hindawi. J. Math., 13(2021).
  • [18] X. Chen, H. Gu, X. Wang, Existence and uniqueness for fuzzy differential equation with Hilfer-Katugampola fractional derivative, Adv. Differ. Equ., 2020(2020), 241.
  • [19] N.V. Hoa, H. Vu, T.M. Duc, Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach, Fuzzy Sets Syst., 375(2019), 70-99.
  • [20] N.V. Hoa, Fuzzy fractional functional differential equations under Caputo gH-differentiability, Commun. Nonlinear. Sci. Numer. Simul., 22(1-3)(2015), 1134-1157.
  • [21] D.F. Luo, T. Abdeljawad, Z.G. Luo, Ulam-Hyers stability results for a novel nonlinear nabla caputo fractional variable order difference system, Turk. J. Math., 45(1)(2021), 456-70.
  • [22] D. Luo, K. Shah, Z. Luo, On the novel Ulam-Hyers stability for a class of nonlinear y-Hilfer fractional differential equation with time-varying delays, Mediterr. J. Math., 16(5)(2019), 112.
  • [23] S. Rashid, F. Jarad, K.M. Abualnaja, On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfergeneralized proportional fractional derivative, AIMS Math., 6(2021), 10920-10946.
  • [24] H. Vu, J.M. Rassias, N.V. Hoa, Ulam-Hyers-Rassias stability for fuzzy fractional integral equations, Iran. J. Fuzzy syst., 17(2020), 17-27.
  • [25] X. Wang, D. Luo, Q. Zhu, Ulam-Hyers stability of Caputo type fuzzy fractional differential equation with time-delays, Chaos. Solitons. Fractals., 156(2022), 111822.
Year 2023, Volume: 6 Issue: 3, 115 - 127, 17.09.2023
https://doi.org/10.33434/cams.1257750

Abstract

Project Number

-

References

  • [1] M. Benchohra, J.J. Nieto, A. Ouahab, Fuzzy solutions for impulsive differential equations, Commun. Appl. Anal., 11(2007), 379-394.
  • [2] M. Benchohra, J. Henderson, S.L. Ntouyas, Impulsive Differential Equations and Inclusions, New York, Hindawi Publishing Corporation, 2(2006).
  • [3] M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solutions for impulsive fractional differential equations, Commun. Nonlinear. Sci. Numer. Simul., 17(7)(2012), 3050-3060.
  • [4] T.L. Guo, W. Jiang, Impulsive fractional functional differential equations, Comput. Math. Appl., 64(2012), 3414-3424.
  • [5] N.V. Hoa, D. O’Regan, A remark on y-Hilfer fractional differential equations with non-instantaneous impulses, Math. Methods. Appl. Sci., 43(2020), 3354-3368.
  • [6] N.V. Hoa, T.V. An, Fuzzy differential equations with Riemann-Liouville generalized fractional integrable impulses, Fuzzy Sets Syst., 2021.
  • [7] D. Luo, Z. Luo, Existence and Hyers-Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses, Math. Slovaca., 70(5)(2020), 1231-1248.
  • [8] J.V.D.C. Sousa, K.D. Kucche, E.C. de Oliveira, Stability of y-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88(2019), 73-80.
  • [9] J.V.D.C. Sousa, D.D.S. Oliveira, E.C. de Oliveira, On the existence and stability for non-instantaneous impulsive fractional integro-differential equations, Math. Methods. Appl. Sci., 42(2019), 1249-1261.
  • [10] K.M. Furati, M.D. Kassim, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64(6)(2012), 1616-1626.
  • [11] R. Hilfer, Applications of Fractional Calculus in Physics, Singapore, World scientific, 2000.
  • [12] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
  • [13] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
  • [14] J.V.D.C. Sousa, E.C. de Oliveira, On the y-Hilfer fractional derivative, Commun. Nonlinear. Sci. Numer. Simul., 60(2018), 72-91.
  • [15] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy sets syst., 230(2013), 119-141.
  • [16] V. Lakshikantham, R.N. Mohapatra, Theory of fuzzy differential equations and applications, London, CRC Press, 2003.
  • [17] L. Sajedi, N. Eghbali, H. Aydi, Impulsive coupled system of fractional differential equations with Caputo-Katugampola fuzzy fractional derivative, Hindawi. J. Math., 13(2021).
  • [18] X. Chen, H. Gu, X. Wang, Existence and uniqueness for fuzzy differential equation with Hilfer-Katugampola fractional derivative, Adv. Differ. Equ., 2020(2020), 241.
  • [19] N.V. Hoa, H. Vu, T.M. Duc, Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach, Fuzzy Sets Syst., 375(2019), 70-99.
  • [20] N.V. Hoa, Fuzzy fractional functional differential equations under Caputo gH-differentiability, Commun. Nonlinear. Sci. Numer. Simul., 22(1-3)(2015), 1134-1157.
  • [21] D.F. Luo, T. Abdeljawad, Z.G. Luo, Ulam-Hyers stability results for a novel nonlinear nabla caputo fractional variable order difference system, Turk. J. Math., 45(1)(2021), 456-70.
  • [22] D. Luo, K. Shah, Z. Luo, On the novel Ulam-Hyers stability for a class of nonlinear y-Hilfer fractional differential equation with time-varying delays, Mediterr. J. Math., 16(5)(2019), 112.
  • [23] S. Rashid, F. Jarad, K.M. Abualnaja, On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfergeneralized proportional fractional derivative, AIMS Math., 6(2021), 10920-10946.
  • [24] H. Vu, J.M. Rassias, N.V. Hoa, Ulam-Hyers-Rassias stability for fuzzy fractional integral equations, Iran. J. Fuzzy syst., 17(2020), 17-27.
  • [25] X. Wang, D. Luo, Q. Zhu, Ulam-Hyers stability of Caputo type fuzzy fractional differential equation with time-delays, Chaos. Solitons. Fractals., 156(2022), 111822.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ravichandran Vıvek This is me 0000-0002-1451-0875

Kangarajan K. 0000-0001-5556-2658

Dvivek Vivek 0000-0003-0951-8060

Elsayed Elsayed 0000-0003-0894-8472

Project Number -
Early Pub Date September 12, 2023
Publication Date September 17, 2023
Submission Date February 28, 2023
Acceptance Date July 25, 2023
Published in Issue Year 2023 Volume: 6 Issue: 3

Cite

APA Vıvek, R., K., K., Vivek, D., Elsayed, E. (2023). Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations with Impulses. Communications in Advanced Mathematical Sciences, 6(3), 115-127. https://doi.org/10.33434/cams.1257750
AMA Vıvek R, K. K, Vivek D, Elsayed E. Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations with Impulses. Communications in Advanced Mathematical Sciences. September 2023;6(3):115-127. doi:10.33434/cams.1257750
Chicago Vıvek, Ravichandran, Kangarajan K., Dvivek Vivek, and Elsayed Elsayed. “Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations With Impulses”. Communications in Advanced Mathematical Sciences 6, no. 3 (September 2023): 115-27. https://doi.org/10.33434/cams.1257750.
EndNote Vıvek R, K. K, Vivek D, Elsayed E (September 1, 2023) Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations with Impulses. Communications in Advanced Mathematical Sciences 6 3 115–127.
IEEE R. Vıvek, K. K., D. Vivek, and E. Elsayed, “Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations with Impulses”, Communications in Advanced Mathematical Sciences, vol. 6, no. 3, pp. 115–127, 2023, doi: 10.33434/cams.1257750.
ISNAD Vıvek, Ravichandran et al. “Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations With Impulses”. Communications in Advanced Mathematical Sciences 6/3 (September 2023), 115-127. https://doi.org/10.33434/cams.1257750.
JAMA Vıvek R, K. K, Vivek D, Elsayed E. Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations with Impulses. Communications in Advanced Mathematical Sciences. 2023;6:115–127.
MLA Vıvek, Ravichandran et al. “Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations With Impulses”. Communications in Advanced Mathematical Sciences, vol. 6, no. 3, 2023, pp. 115-27, doi:10.33434/cams.1257750.
Vancouver Vıvek R, K. K, Vivek D, Elsayed E. Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations with Impulses. Communications in Advanced Mathematical Sciences. 2023;6(3):115-27.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..