Research Article
BibTex RIS Cite

Paketimsi ve Kırınmayan Işınların Atmosferde Bir Engel Tarafından Kırınması

Year 2011, Volume: 8 Issue: 1, - , 01.05.2011

Abstract

This study takes two different solutions of homogenous wave equation into
consideration. These solutions are named as packet-like solution and non-diffracting beam.
First of all the propagation of these waves in the atmosphere is investigated. As a second
step, an obstacle (a knife edge) is located on the propagation path of the diffracting beam
and the diffraction effects are examined. The results are plotted numerically by using
MATLAB.


References

  • [1] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc., New York, 1962.
  • [2] P. A. B´elanger, Packetlike solutions of the homogeneous-wave equation, Journal of the Optical Society of America A 1 (1984), 723–724.
  • [3] P. A. B´elanger, Lorentz transformation of packetlike solutions of the homogeneous-wave equation, Journal of the Optical Society of America A 3 (1986), 541–542.
  • [4] A. Sezginer, A general formulation of focus wave modes, Journal of Applied Physics 57 (1985), 678–683.
  • [5] R. W. Ziolkowski, Exact solutions of the wave equation with complex source locations, Journal of Mathematical Physics 26 (1985), 861–863.
  • [6] J. N. Brittingham, Focus waves modes in homogeneous Maxwell’s equations: Transverse electric mode, Journal of Applied Physics 54 (1983), 1179–1189.
  • [7] P. Hillion, Focus wave modes and diffraction of plane waves, Journal of Optics 23 (1992), 233–235.
  • [8] M. R. Palmer and R. Donnelly, Focused waves and the scalar wave equation, Journal of Mathematical Physics 34 (1993), 4007–4013.
  • [9] T. T. Wu and R. W. P. King, Comment on “Focus wave modes in homogeneous Maxwell’s equations: Transverse electric mode”, Journal of Applied Physics 56 (1984), 2587–2588.
  • [10] P. Hillion, Diffraction of focus wave modes at a perfectly conducting screen, Optics Communications 123 (1996), 215–224.
  • [11] G. C. Sherman and H. J. Bremermiann, Generalization of the angular spectrum of plane waves and the diffraction transform, Journal of the Optical Society of America 59 (1969), 146–156.
  • [12] J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory, Journal of the Optical Society of America A 4 (1987), 651–654.
  • [13] M. Moshinsky, Diffraction in time, Physical Review 88 (1952), 625–631.
Year 2011, Volume: 8 Issue: 1, - , 01.05.2011

Abstract

References

  • [1] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc., New York, 1962.
  • [2] P. A. B´elanger, Packetlike solutions of the homogeneous-wave equation, Journal of the Optical Society of America A 1 (1984), 723–724.
  • [3] P. A. B´elanger, Lorentz transformation of packetlike solutions of the homogeneous-wave equation, Journal of the Optical Society of America A 3 (1986), 541–542.
  • [4] A. Sezginer, A general formulation of focus wave modes, Journal of Applied Physics 57 (1985), 678–683.
  • [5] R. W. Ziolkowski, Exact solutions of the wave equation with complex source locations, Journal of Mathematical Physics 26 (1985), 861–863.
  • [6] J. N. Brittingham, Focus waves modes in homogeneous Maxwell’s equations: Transverse electric mode, Journal of Applied Physics 54 (1983), 1179–1189.
  • [7] P. Hillion, Focus wave modes and diffraction of plane waves, Journal of Optics 23 (1992), 233–235.
  • [8] M. R. Palmer and R. Donnelly, Focused waves and the scalar wave equation, Journal of Mathematical Physics 34 (1993), 4007–4013.
  • [9] T. T. Wu and R. W. P. King, Comment on “Focus wave modes in homogeneous Maxwell’s equations: Transverse electric mode”, Journal of Applied Physics 56 (1984), 2587–2588.
  • [10] P. Hillion, Diffraction of focus wave modes at a perfectly conducting screen, Optics Communications 123 (1996), 215–224.
  • [11] G. C. Sherman and H. J. Bremermiann, Generalization of the angular spectrum of plane waves and the diffraction transform, Journal of the Optical Society of America 59 (1969), 146–156.
  • [12] J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory, Journal of the Optical Society of America A 4 (1987), 651–654.
  • [13] M. Moshinsky, Diffraction in time, Physical Review 88 (1952), 625–631.
There are 13 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Mustafa Kara

Publication Date May 1, 2011
Published in Issue Year 2011 Volume: 8 Issue: 1

Cite

APA Kara, M. (2011). Paketimsi ve Kırınmayan Işınların Atmosferde Bir Engel Tarafından Kırınması. Cankaya University Journal of Science and Engineering, 8(1).
AMA Kara M. Paketimsi ve Kırınmayan Işınların Atmosferde Bir Engel Tarafından Kırınması. CUJSE. May 2011;8(1).
Chicago Kara, Mustafa. “Paketimsi Ve Kırınmayan Işınların Atmosferde Bir Engel Tarafından Kırınması”. Cankaya University Journal of Science and Engineering 8, no. 1 (May 2011).
EndNote Kara M (May 1, 2011) Paketimsi ve Kırınmayan Işınların Atmosferde Bir Engel Tarafından Kırınması. Cankaya University Journal of Science and Engineering 8 1
IEEE M. Kara, “Paketimsi ve Kırınmayan Işınların Atmosferde Bir Engel Tarafından Kırınması”, CUJSE, vol. 8, no. 1, 2011.
ISNAD Kara, Mustafa. “Paketimsi Ve Kırınmayan Işınların Atmosferde Bir Engel Tarafından Kırınması”. Cankaya University Journal of Science and Engineering 8/1 (May 2011).
JAMA Kara M. Paketimsi ve Kırınmayan Işınların Atmosferde Bir Engel Tarafından Kırınması. CUJSE. 2011;8.
MLA Kara, Mustafa. “Paketimsi Ve Kırınmayan Işınların Atmosferde Bir Engel Tarafından Kırınması”. Cankaya University Journal of Science and Engineering, vol. 8, no. 1, 2011.
Vancouver Kara M. Paketimsi ve Kırınmayan Işınların Atmosferde Bir Engel Tarafından Kırınması. CUJSE. 2011;8(1).