Research Article
BibTex RIS Cite

Türkiye'de Deprem Tekrarlanma Zamanının Tahmini ve Neotektonik Bölgelere Göre Depremselliğin Markov Zinciri ile İncelenmesi

Year 2012, Volume: 9 Issue: 2, - , 01.04.2012

Abstract

The Markov chain is a probabilistic model used with stochastic processes in
many branches of science such as seismology, biology, meteorology and hydrology. This
model is utilized to evaluate modeling of an event and allows the use of combinatorial
probability estimates including initial and transitional probabilities. These probabilities
contain useful information that can be used in earthquake modelling. In this paper, the
Markov chain approach is applied to 108 years of earthquake data recorded at Kandilli
Observatory since a signicant portion of Turkey is subject to frequent earthquakes. 

References

  • [1] C. A. Cornell, Engineering seismic risk analysis, Bulletin of the Seismological Society of America 58 (1968), 1583–1606.
  • [2] M. Caputo, Analysis of seismic risk. In: Engineering Seismology and Earthquake Engineering, NATO Advanced Study Institutes Series, Series E: Applied Sciences, 3 (1974), 55–86.
  • [3] H. C. Shah and M. Movassate, Seismic risk analysis of California State water Project, Proceedings of the 5th European Conference on Earthquake Engineering, ˙Istanbul, Turkey 3 (1975), 99–106.
  • [4] M. B˚ath, Seismic risk in Fennoscandia, Tectonophysics 57 (1979), 285–295.
  • [5] L. Epstein and C. Lomnitz, A model for the occurrence of large earthquakes, Nature 211 (1966), 954–956.
  • [6] C. Lomnitz, Global Tectonic and Earthquake Risk, Elsevier Scientific, Amsterdam, Netherlands 1974.
  • [7] L. Knopoff and Y. Kagan, Analysis of the theory of extremes as applied to earthquake problems, Journal of Geophysical Research 82 (1977), 5647–5657.
  • [8] A. S. Kiremidjian, A minimum stress level model for large high strain energy thresholds corresponding to earthquakes, Proceeding of 7th ECEE, Athens, Greece (1982), 32–41.
  • [9] S. Suzuki and A. S. Kiremidjian, A random slip rate model for earthquake occurrences with Bayesian parameters, Bulletin of the Seismological Society of America 81 (1991), 781–794.
  • [10] Y. Hagiwara, A stochastic model of earthquake occurrence and the accompanying horizontal land deformation, Tectonophysics 26 (1975), 91–101.
  • [11] A. S. Kiremidjian and T. Anagnos, Stochastic slip predictable model for earthquake occurrences, Bulletin of the Seismological Society of America 74 (1984), 739–755.
  • [12] D. Athanasiou-Grivas, R. Dyvik and J. Howland, An engineering analysis of the seismic history of New York State, Proceedings of the Seventh World Conference on Earthquake Engineering, İstanbul, Turkey 1 (1980), 324–331.
  • [13] V. Gökçe, Seismicity and Earthquake Hazard Analysis in Southwest of Turkey, Master Thesis, Süleyman Demirel University, Isparta, Turkey 2007.
  • [14] Y. Altınok, Semi-Markov modelinin Kuzey Anadolu Fay Zonu’nda deprem riskine uygulanması, Jeofizik 2 (1988), 44–58.
  • [15] G. Özel and C. İnal, The probability function of the compound Poisson process and an application to aftershock sequences, Environmetrics 19 (2008), 79–85.
  • [16] G. Özel, A bivariate compound Poisson model for the occurrence of foreshock and aftershock sequences in Turkey, Environmetrics 22 (2011), 847–856.
  • [17] G. Özel, On certain properties of a class of bivariate compound Poisson distributions and an application to earthquake data, Revista Colombiana de Estadistica 34 (2011), 545–566.
  • [18] R. Pınar, Z. Akçığ ve F. Demirel, Batı Anadolu depremselliğinin Markov yöntemi ile araştırılması, Jeofizik 3 (1999), 56–66.
  • [19] E. Ulutaş ve M. F. Özer, Markov modeli kullanılarak Çukurova Bölgesinin deprem tehlikesinin belirlenmesi, Jeofizik 14 (2000), 104–105.
  • [20] S. Ünal, ¨ Türkiye’de Meydana Gelen Depremlerin Markov Zincirleri ile Modellenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi Sosyal Bilimler Enstitüsü, Ankara, Turkey 2010. ¨
  • [21] R. Kasap ve Ü. Gürlen, Deprem magnitüdleri i¸cin tekrarlanma yıllarının elde edilmesi: Marmara Bölgesi örneği, Doğuş Üniversitesi Dergisi ¨ 4 (2003), 157–166.
  • [22] C. İnal, Olasılıksal Süreçlere Giriş, Hacettepe Üniversitesi Yayınları, Ankara, 1988.
  • [23] Ö. Önalan, Stokastik Süreçler, Avcıol Basım Yayın, İstanbul 2010.
  • [24] F. Aparisi and C. J. Diaz, Design and optimization of EWMA control charts for in-control, indifference, and out-of-control regions, Computers & Operations Research 34 (2007), 2096–2108.
  • [25] D. A. Serel and H. Moskowitz, Joint economic design of EWMA control charts for mean and variance, European Journal of Operational Research 184 (2008), 157–168.
  • [26] A. M. C. Şengör, Türkiye’nin Neotektoniğin Esasları, Türkiye Jeoloji Kurumu, Ankara 1980.
Year 2012, Volume: 9 Issue: 2, - , 01.04.2012

Abstract

References

  • [1] C. A. Cornell, Engineering seismic risk analysis, Bulletin of the Seismological Society of America 58 (1968), 1583–1606.
  • [2] M. Caputo, Analysis of seismic risk. In: Engineering Seismology and Earthquake Engineering, NATO Advanced Study Institutes Series, Series E: Applied Sciences, 3 (1974), 55–86.
  • [3] H. C. Shah and M. Movassate, Seismic risk analysis of California State water Project, Proceedings of the 5th European Conference on Earthquake Engineering, ˙Istanbul, Turkey 3 (1975), 99–106.
  • [4] M. B˚ath, Seismic risk in Fennoscandia, Tectonophysics 57 (1979), 285–295.
  • [5] L. Epstein and C. Lomnitz, A model for the occurrence of large earthquakes, Nature 211 (1966), 954–956.
  • [6] C. Lomnitz, Global Tectonic and Earthquake Risk, Elsevier Scientific, Amsterdam, Netherlands 1974.
  • [7] L. Knopoff and Y. Kagan, Analysis of the theory of extremes as applied to earthquake problems, Journal of Geophysical Research 82 (1977), 5647–5657.
  • [8] A. S. Kiremidjian, A minimum stress level model for large high strain energy thresholds corresponding to earthquakes, Proceeding of 7th ECEE, Athens, Greece (1982), 32–41.
  • [9] S. Suzuki and A. S. Kiremidjian, A random slip rate model for earthquake occurrences with Bayesian parameters, Bulletin of the Seismological Society of America 81 (1991), 781–794.
  • [10] Y. Hagiwara, A stochastic model of earthquake occurrence and the accompanying horizontal land deformation, Tectonophysics 26 (1975), 91–101.
  • [11] A. S. Kiremidjian and T. Anagnos, Stochastic slip predictable model for earthquake occurrences, Bulletin of the Seismological Society of America 74 (1984), 739–755.
  • [12] D. Athanasiou-Grivas, R. Dyvik and J. Howland, An engineering analysis of the seismic history of New York State, Proceedings of the Seventh World Conference on Earthquake Engineering, İstanbul, Turkey 1 (1980), 324–331.
  • [13] V. Gökçe, Seismicity and Earthquake Hazard Analysis in Southwest of Turkey, Master Thesis, Süleyman Demirel University, Isparta, Turkey 2007.
  • [14] Y. Altınok, Semi-Markov modelinin Kuzey Anadolu Fay Zonu’nda deprem riskine uygulanması, Jeofizik 2 (1988), 44–58.
  • [15] G. Özel and C. İnal, The probability function of the compound Poisson process and an application to aftershock sequences, Environmetrics 19 (2008), 79–85.
  • [16] G. Özel, A bivariate compound Poisson model for the occurrence of foreshock and aftershock sequences in Turkey, Environmetrics 22 (2011), 847–856.
  • [17] G. Özel, On certain properties of a class of bivariate compound Poisson distributions and an application to earthquake data, Revista Colombiana de Estadistica 34 (2011), 545–566.
  • [18] R. Pınar, Z. Akçığ ve F. Demirel, Batı Anadolu depremselliğinin Markov yöntemi ile araştırılması, Jeofizik 3 (1999), 56–66.
  • [19] E. Ulutaş ve M. F. Özer, Markov modeli kullanılarak Çukurova Bölgesinin deprem tehlikesinin belirlenmesi, Jeofizik 14 (2000), 104–105.
  • [20] S. Ünal, ¨ Türkiye’de Meydana Gelen Depremlerin Markov Zincirleri ile Modellenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi Sosyal Bilimler Enstitüsü, Ankara, Turkey 2010. ¨
  • [21] R. Kasap ve Ü. Gürlen, Deprem magnitüdleri i¸cin tekrarlanma yıllarının elde edilmesi: Marmara Bölgesi örneği, Doğuş Üniversitesi Dergisi ¨ 4 (2003), 157–166.
  • [22] C. İnal, Olasılıksal Süreçlere Giriş, Hacettepe Üniversitesi Yayınları, Ankara, 1988.
  • [23] Ö. Önalan, Stokastik Süreçler, Avcıol Basım Yayın, İstanbul 2010.
  • [24] F. Aparisi and C. J. Diaz, Design and optimization of EWMA control charts for in-control, indifference, and out-of-control regions, Computers & Operations Research 34 (2007), 2096–2108.
  • [25] D. A. Serel and H. Moskowitz, Joint economic design of EWMA control charts for mean and variance, European Journal of Operational Research 184 (2008), 157–168.
  • [26] A. M. C. Şengör, Türkiye’nin Neotektoniğin Esasları, Türkiye Jeoloji Kurumu, Ankara 1980.
There are 26 citations in total.

Details

Journal Section Articles
Authors

Gamze Ozel

Aysun Solmaz This is me

Publication Date April 1, 2012
Published in Issue Year 2012 Volume: 9 Issue: 2

Cite

APA Ozel, G., & Solmaz, A. (2012). Türkiye’de Deprem Tekrarlanma Zamanının Tahmini ve Neotektonik Bölgelere Göre Depremselliğin Markov Zinciri ile İncelenmesi. Cankaya University Journal of Science and Engineering, 9(2).
AMA Ozel G, Solmaz A. Türkiye’de Deprem Tekrarlanma Zamanının Tahmini ve Neotektonik Bölgelere Göre Depremselliğin Markov Zinciri ile İncelenmesi. CUJSE. April 2012;9(2).
Chicago Ozel, Gamze, and Aysun Solmaz. “Türkiye’de Deprem Tekrarlanma Zamanının Tahmini Ve Neotektonik Bölgelere Göre Depremselliğin Markov Zinciri Ile İncelenmesi”. Cankaya University Journal of Science and Engineering 9, no. 2 (April 2012).
EndNote Ozel G, Solmaz A (April 1, 2012) Türkiye’de Deprem Tekrarlanma Zamanının Tahmini ve Neotektonik Bölgelere Göre Depremselliğin Markov Zinciri ile İncelenmesi. Cankaya University Journal of Science and Engineering 9 2
IEEE G. Ozel and A. Solmaz, “Türkiye’de Deprem Tekrarlanma Zamanının Tahmini ve Neotektonik Bölgelere Göre Depremselliğin Markov Zinciri ile İncelenmesi”, CUJSE, vol. 9, no. 2, 2012.
ISNAD Ozel, Gamze - Solmaz, Aysun. “Türkiye’de Deprem Tekrarlanma Zamanının Tahmini Ve Neotektonik Bölgelere Göre Depremselliğin Markov Zinciri Ile İncelenmesi”. Cankaya University Journal of Science and Engineering 9/2 (April 2012).
JAMA Ozel G, Solmaz A. Türkiye’de Deprem Tekrarlanma Zamanının Tahmini ve Neotektonik Bölgelere Göre Depremselliğin Markov Zinciri ile İncelenmesi. CUJSE. 2012;9.
MLA Ozel, Gamze and Aysun Solmaz. “Türkiye’de Deprem Tekrarlanma Zamanının Tahmini Ve Neotektonik Bölgelere Göre Depremselliğin Markov Zinciri Ile İncelenmesi”. Cankaya University Journal of Science and Engineering, vol. 9, no. 2, 2012.
Vancouver Ozel G, Solmaz A. Türkiye’de Deprem Tekrarlanma Zamanının Tahmini ve Neotektonik Bölgelere Göre Depremselliğin Markov Zinciri ile İncelenmesi. CUJSE. 2012;9(2).