Research Article
BibTex RIS Cite
Year 2019, Volume: 16 Issue: 2, 10 - 15, 01.11.2019

Abstract

References

  • M. S .Abbass, On fully stable modules , Ph.D. Thesis, University of Baghdad, 1991.
  • 2. W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
  • 3. H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, TaiwaneseJ. Math. 11 (4) (2007), 1189–1201.
  • 4. H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci. 8(1) (2009), 105–113.
  • 5. H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent modules, Bull.Iranian Math. Soc. 38 (4 ) (2012), 987-1005.
  • 6. A. Barnard, Multiplication modules, J. Algebra 71 (1981), 174–178.
  • 7. C. Faith, Rings whose modules have maximal submodules, Publ. Mat. 39 (1995), 201-214.
  • 8. Adil G. Naoum and Bahar H. Al-Bahraany, Modules with the pure sum property, Iraqi J. Sci.,43 (3) (2002), 39-51.
  • 9. R. Y. Sharp, Step in commutative algebra, Cambridge University Press, 1990.
  • 10. R. Wisbauer, Foundations of Modules and Rings Theory, Gordon and Breach, Philadelphia,PA, 1991.

Copure Submodules and Related Results

Year 2019, Volume: 16 Issue: 2, 10 - 15, 01.11.2019

Abstract


Let
M be a module over a commutative ring R with identity. A
submodule K of M is copure provided that
(K :M I) = K + (0 :M I) for
each ideal I of R. In this paper, we investigate some results
about copure submodules of M

References

  • M. S .Abbass, On fully stable modules , Ph.D. Thesis, University of Baghdad, 1991.
  • 2. W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
  • 3. H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, TaiwaneseJ. Math. 11 (4) (2007), 1189–1201.
  • 4. H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci. 8(1) (2009), 105–113.
  • 5. H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent modules, Bull.Iranian Math. Soc. 38 (4 ) (2012), 987-1005.
  • 6. A. Barnard, Multiplication modules, J. Algebra 71 (1981), 174–178.
  • 7. C. Faith, Rings whose modules have maximal submodules, Publ. Mat. 39 (1995), 201-214.
  • 8. Adil G. Naoum and Bahar H. Al-Bahraany, Modules with the pure sum property, Iraqi J. Sci.,43 (3) (2002), 39-51.
  • 9. R. Y. Sharp, Step in commutative algebra, Cambridge University Press, 1990.
  • 10. R. Wisbauer, Foundations of Modules and Rings Theory, Gordon and Breach, Philadelphia,PA, 1991.
There are 10 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Faranak Farshadıfar

Publication Date November 1, 2019
Published in Issue Year 2019 Volume: 16 Issue: 2

Cite

APA Farshadıfar, F. (2019). Copure Submodules and Related Results. Cankaya University Journal of Science and Engineering, 16(2), 10-15.
AMA Farshadıfar F. Copure Submodules and Related Results. CUJSE. November 2019;16(2):10-15.
Chicago Farshadıfar, Faranak. “Copure Submodules and Related Results”. Cankaya University Journal of Science and Engineering 16, no. 2 (November 2019): 10-15.
EndNote Farshadıfar F (November 1, 2019) Copure Submodules and Related Results. Cankaya University Journal of Science and Engineering 16 2 10–15.
IEEE F. Farshadıfar, “Copure Submodules and Related Results”, CUJSE, vol. 16, no. 2, pp. 10–15, 2019.
ISNAD Farshadıfar, Faranak. “Copure Submodules and Related Results”. Cankaya University Journal of Science and Engineering 16/2 (November 2019), 10-15.
JAMA Farshadıfar F. Copure Submodules and Related Results. CUJSE. 2019;16:10–15.
MLA Farshadıfar, Faranak. “Copure Submodules and Related Results”. Cankaya University Journal of Science and Engineering, vol. 16, no. 2, 2019, pp. 10-15.
Vancouver Farshadıfar F. Copure Submodules and Related Results. CUJSE. 2019;16(2):10-5.