Research Article
BibTex RIS Cite

On Parafree Leibniz Algebras

Year 2022, , 275 - 278, 29.09.2022
https://doi.org/10.18466/cbayarfbe.1072438

Abstract

The parafree Leibniz algebras are a special class of Leibniz algebras which have many properties with a free Leibniz algebra. In this note, we introduce the structure of parafree Leibniz algebras. We survey the
important results in parafree Leibniz algebras which are analogs of corresponding results in parafree Lie algebras. We first investigate some properties of subalgebras and quotient algebras of parafree Leibniz algebras. Then, we describe the direct sum of parafree Leibniz algebras. We show that the direct sum of two parafree Leibniz algebras is a Leibniz algebra. Furthermore, we prove that the direct sum of two parafree Leibniz algebras is again parafree.

References

  • 1. Bahturin, Y. Identity relations in Lie algebras, VNU Science Press, Utrecht, 1987.
  • 2. Baur, H. 1980. A note on parafree Lie algebras, Commun. in Alg.; 8(10): 953-960.
  • 3. Baur, H. 1978. Parafreie Lie algebren and homologie, Diss. Eth Nr.; 6126: 60 pp.
  • 4. Bloh, A.M. 1965. A generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR; 165: 471-473.
  • 5. A.M. Bloh, A.M. 1971. A certain generalization of the concept of Lie algebra, Algebra and Number Theory, Moskow. Gos. Ped. Inst. U`cen; 375: 9-20.
  • 6. Ekici, N, Velioğlu, Z. 2014. Unions of Parafree Lie algebras, Algebra; Article ID 385397.
  • 7. Ekici, N, Velioğlu, Z. 2015. Direct Limit of Parafree Lie algebras, Journal of Lie Theory; 25(2): 477-484.
  • 8. Evans, T. 1969. Finitely presented loops, lattices, etc. are Hopfian, J. London Math. Soc.; 44: 551-552.
  • 9. Loday, J.L., Pirashvili, T. 1993. Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann.; 269(1): 139-158.
  • 10. Velioğlu, Z. 2013. Subalgebras and Quotient algebras of Parafree Lie algebras, I. Journal Pure and Applied Maths.; 83(3) 507-514.
Year 2022, , 275 - 278, 29.09.2022
https://doi.org/10.18466/cbayarfbe.1072438

Abstract

References

  • 1. Bahturin, Y. Identity relations in Lie algebras, VNU Science Press, Utrecht, 1987.
  • 2. Baur, H. 1980. A note on parafree Lie algebras, Commun. in Alg.; 8(10): 953-960.
  • 3. Baur, H. 1978. Parafreie Lie algebren and homologie, Diss. Eth Nr.; 6126: 60 pp.
  • 4. Bloh, A.M. 1965. A generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR; 165: 471-473.
  • 5. A.M. Bloh, A.M. 1971. A certain generalization of the concept of Lie algebra, Algebra and Number Theory, Moskow. Gos. Ped. Inst. U`cen; 375: 9-20.
  • 6. Ekici, N, Velioğlu, Z. 2014. Unions of Parafree Lie algebras, Algebra; Article ID 385397.
  • 7. Ekici, N, Velioğlu, Z. 2015. Direct Limit of Parafree Lie algebras, Journal of Lie Theory; 25(2): 477-484.
  • 8. Evans, T. 1969. Finitely presented loops, lattices, etc. are Hopfian, J. London Math. Soc.; 44: 551-552.
  • 9. Loday, J.L., Pirashvili, T. 1993. Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann.; 269(1): 139-158.
  • 10. Velioğlu, Z. 2013. Subalgebras and Quotient algebras of Parafree Lie algebras, I. Journal Pure and Applied Maths.; 83(3) 507-514.
There are 10 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nil Mansuroğlu 0000-0002-6400-2115

Publication Date September 29, 2022
Published in Issue Year 2022

Cite

APA Mansuroğlu, N. (2022). On Parafree Leibniz Algebras. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 18(3), 275-278. https://doi.org/10.18466/cbayarfbe.1072438
AMA Mansuroğlu N. On Parafree Leibniz Algebras. CBUJOS. September 2022;18(3):275-278. doi:10.18466/cbayarfbe.1072438
Chicago Mansuroğlu, Nil. “On Parafree Leibniz Algebras”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18, no. 3 (September 2022): 275-78. https://doi.org/10.18466/cbayarfbe.1072438.
EndNote Mansuroğlu N (September 1, 2022) On Parafree Leibniz Algebras. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18 3 275–278.
IEEE N. Mansuroğlu, “On Parafree Leibniz Algebras”, CBUJOS, vol. 18, no. 3, pp. 275–278, 2022, doi: 10.18466/cbayarfbe.1072438.
ISNAD Mansuroğlu, Nil. “On Parafree Leibniz Algebras”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18/3 (September 2022), 275-278. https://doi.org/10.18466/cbayarfbe.1072438.
JAMA Mansuroğlu N. On Parafree Leibniz Algebras. CBUJOS. 2022;18:275–278.
MLA Mansuroğlu, Nil. “On Parafree Leibniz Algebras”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 18, no. 3, 2022, pp. 275-8, doi:10.18466/cbayarfbe.1072438.
Vancouver Mansuroğlu N. On Parafree Leibniz Algebras. CBUJOS. 2022;18(3):275-8.