Research Article
BibTex RIS Cite

Some Perturbed Trapezoid Inequalities for n-times Differentiable Strongly log-Convex Functions

Year 2022, , 355 - 363, 26.12.2022
https://doi.org/10.18466/cbayarfbe.1106792

Abstract

The aim of this study is to introduce some inequalities for n-times differentiable strongly log-convex functions. The perturbed trapezoid inequality is used to establish the new inequalities. It is seen that these inequalities have a better upper bound than the inequalities obtained for log-convex functions. Besides, the mentioned inequalities for strongly log-convex functions are reduced to the ones given for log-convex functions with a suitable choice of the arbitrary constant.

Supporting Institution

Yok

Project Number

-

Thanks

-

References

  • Polyak, BT. 1966. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Soviet Math. Dokl; 7: 2-75.
  • Necoara, I, Nesterov, Y, Glineur, F. 2019. Linear convergence of first order methods for non-strongly convex optimization. Mathematical Programming; 175: 69-107.
  • Karamardian, S. 1969. The nonlinear complementarity problems with applications, Part II. Journal of Optimization Theory and Applications; 4 (3): 167-181.
  • Nikodem, K, Pales, ZS. 2011. Characterizations of inner product spaces by strongly convex function. Banach J. Math. Anal.: 1(2): 83-87.
  • Zu, DL, Marcotte, P. 1996. Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities. SIAM Journal on Optimization; 6(3): 714- 726.
  • Qu, G, Li, N. 2019. On the exponentially stability of primal-dual gradient dynamics. IEEE Control Syst. Letters; 3(1): 46-48.
  • Noor, MA, Noor, KI. 2019. On generalized strongly convex functions involving bifunction. Appl. Math. Inform. Sci.; 13(3): 411-416.
  • Mohsen, BB, Noor, MA, Noor, KI, Postolache, M. 2019. Strongly convex functions of higher order involving bifunction. Mathematics; 7(1028): 1-12.
  • Cristescu, G, Lupsa, L. Non-Connected Convexities and Applications. Kluwer Academic Publisher, Dordrechet, 2002.
  • Niculescu, CF, Persson, LE. Convex Functions and Their Applications. Springer-Verlag, New York, 2018.
  • Pecaric, J, Proschan, F, Tong, YL. Convex Functions, Partial Orderings and Statistical Applications. Academic Press: New York, 1992.
  • Noor, MA. 2004. Some developments in general variational inequalities. Appl. Math. Comput.; 152: 199-277.
  • Noor, MA, Noor, KI. 2021. Higher order general convex functions and general variational inequalities. Canadian J. Appl. Math.; 3(1): 1-17.
  • Merentes, N, Nikodem, K. 2010. Remarks on strongly convex functions. Aequationes Math.; 80: 193-199.
  • Azcar, A, Nikodem, K, Roa, G. 2012. Fejér-type inequalities for strongly convex functions. Annal. Math. Siles.; 26: 43-54.
  • Noor, MA, Noor, KI, Iftikhar, S. 2020. Inequalities via strongly (p,h)-harmonic convex functions. TWS J. App. Eng. Math.; 10(1): 81-94.
  • Noor, MA, Noor, KI, K. Iftikhar, S. 2016. Hermit-Hadamard inequalities for strongly harmonic convex functions. Journal of Inequalities and Special Functions; 7(3): 99-113.
  • Beckenbach, EF. 1948. Convex functions. Bull. Amer. Math. Soc.; 54: 439-460.
  • Dragomir, SS, Agarwal, RP. 1998. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett., 11(5): 91-95.
  • Şanal, G, Dönmez Demir, D. Some inequalities for n-times differentiable log-convex functions, Manisa Celal Bayar University, II. International University Industry Cooperation, R&D and Innovation Congress, Manisa, Türkiye, 2018, pp.89.
  • Paul, M. 2018. Sur les fonctions convexes et les fonctions sousharmoniques. Journal de Mathématiques Pures et Appliquées; 7: 29-60.
  • Hermite, C. 1883. Sur deux limites d’une integrale definie. Mathesis; 3: 82-83.
  • Dragomir, SS, Cerone, P, Sofo, A. 2000. Some remarks on the trapezoid rule in numerical integration. Indian J. Pure Appl. Math.; 31(5): 475-494.
  • Sykora, S. Mathematical Means and Averages: Basic Properties. 3. Stan’s Library: Castano Primo, Italy, Vol. III, 2009.
Year 2022, , 355 - 363, 26.12.2022
https://doi.org/10.18466/cbayarfbe.1106792

Abstract

Project Number

-

References

  • Polyak, BT. 1966. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Soviet Math. Dokl; 7: 2-75.
  • Necoara, I, Nesterov, Y, Glineur, F. 2019. Linear convergence of first order methods for non-strongly convex optimization. Mathematical Programming; 175: 69-107.
  • Karamardian, S. 1969. The nonlinear complementarity problems with applications, Part II. Journal of Optimization Theory and Applications; 4 (3): 167-181.
  • Nikodem, K, Pales, ZS. 2011. Characterizations of inner product spaces by strongly convex function. Banach J. Math. Anal.: 1(2): 83-87.
  • Zu, DL, Marcotte, P. 1996. Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities. SIAM Journal on Optimization; 6(3): 714- 726.
  • Qu, G, Li, N. 2019. On the exponentially stability of primal-dual gradient dynamics. IEEE Control Syst. Letters; 3(1): 46-48.
  • Noor, MA, Noor, KI. 2019. On generalized strongly convex functions involving bifunction. Appl. Math. Inform. Sci.; 13(3): 411-416.
  • Mohsen, BB, Noor, MA, Noor, KI, Postolache, M. 2019. Strongly convex functions of higher order involving bifunction. Mathematics; 7(1028): 1-12.
  • Cristescu, G, Lupsa, L. Non-Connected Convexities and Applications. Kluwer Academic Publisher, Dordrechet, 2002.
  • Niculescu, CF, Persson, LE. Convex Functions and Their Applications. Springer-Verlag, New York, 2018.
  • Pecaric, J, Proschan, F, Tong, YL. Convex Functions, Partial Orderings and Statistical Applications. Academic Press: New York, 1992.
  • Noor, MA. 2004. Some developments in general variational inequalities. Appl. Math. Comput.; 152: 199-277.
  • Noor, MA, Noor, KI. 2021. Higher order general convex functions and general variational inequalities. Canadian J. Appl. Math.; 3(1): 1-17.
  • Merentes, N, Nikodem, K. 2010. Remarks on strongly convex functions. Aequationes Math.; 80: 193-199.
  • Azcar, A, Nikodem, K, Roa, G. 2012. Fejér-type inequalities for strongly convex functions. Annal. Math. Siles.; 26: 43-54.
  • Noor, MA, Noor, KI, Iftikhar, S. 2020. Inequalities via strongly (p,h)-harmonic convex functions. TWS J. App. Eng. Math.; 10(1): 81-94.
  • Noor, MA, Noor, KI, K. Iftikhar, S. 2016. Hermit-Hadamard inequalities for strongly harmonic convex functions. Journal of Inequalities and Special Functions; 7(3): 99-113.
  • Beckenbach, EF. 1948. Convex functions. Bull. Amer. Math. Soc.; 54: 439-460.
  • Dragomir, SS, Agarwal, RP. 1998. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett., 11(5): 91-95.
  • Şanal, G, Dönmez Demir, D. Some inequalities for n-times differentiable log-convex functions, Manisa Celal Bayar University, II. International University Industry Cooperation, R&D and Innovation Congress, Manisa, Türkiye, 2018, pp.89.
  • Paul, M. 2018. Sur les fonctions convexes et les fonctions sousharmoniques. Journal de Mathématiques Pures et Appliquées; 7: 29-60.
  • Hermite, C. 1883. Sur deux limites d’une integrale definie. Mathesis; 3: 82-83.
  • Dragomir, SS, Cerone, P, Sofo, A. 2000. Some remarks on the trapezoid rule in numerical integration. Indian J. Pure Appl. Math.; 31(5): 475-494.
  • Sykora, S. Mathematical Means and Averages: Basic Properties. 3. Stan’s Library: Castano Primo, Italy, Vol. III, 2009.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Duygu Dönmez Demir 0000-0003-0886-624X

Gülsüm Şanal 0000-0002-9828-6427

Project Number -
Publication Date December 26, 2022
Published in Issue Year 2022

Cite

APA Dönmez Demir, D., & Şanal, G. (2022). Some Perturbed Trapezoid Inequalities for n-times Differentiable Strongly log-Convex Functions. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 18(4), 355-363. https://doi.org/10.18466/cbayarfbe.1106792
AMA Dönmez Demir D, Şanal G. Some Perturbed Trapezoid Inequalities for n-times Differentiable Strongly log-Convex Functions. CBUJOS. December 2022;18(4):355-363. doi:10.18466/cbayarfbe.1106792
Chicago Dönmez Demir, Duygu, and Gülsüm Şanal. “Some Perturbed Trapezoid Inequalities for N-Times Differentiable Strongly Log-Convex Functions”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18, no. 4 (December 2022): 355-63. https://doi.org/10.18466/cbayarfbe.1106792.
EndNote Dönmez Demir D, Şanal G (December 1, 2022) Some Perturbed Trapezoid Inequalities for n-times Differentiable Strongly log-Convex Functions. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18 4 355–363.
IEEE D. Dönmez Demir and G. Şanal, “Some Perturbed Trapezoid Inequalities for n-times Differentiable Strongly log-Convex Functions”, CBUJOS, vol. 18, no. 4, pp. 355–363, 2022, doi: 10.18466/cbayarfbe.1106792.
ISNAD Dönmez Demir, Duygu - Şanal, Gülsüm. “Some Perturbed Trapezoid Inequalities for N-Times Differentiable Strongly Log-Convex Functions”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 18/4 (December 2022), 355-363. https://doi.org/10.18466/cbayarfbe.1106792.
JAMA Dönmez Demir D, Şanal G. Some Perturbed Trapezoid Inequalities for n-times Differentiable Strongly log-Convex Functions. CBUJOS. 2022;18:355–363.
MLA Dönmez Demir, Duygu and Gülsüm Şanal. “Some Perturbed Trapezoid Inequalities for N-Times Differentiable Strongly Log-Convex Functions”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 18, no. 4, 2022, pp. 355-63, doi:10.18466/cbayarfbe.1106792.
Vancouver Dönmez Demir D, Şanal G. Some Perturbed Trapezoid Inequalities for n-times Differentiable Strongly log-Convex Functions. CBUJOS. 2022;18(4):355-63.