Research Article
BibTex RIS Cite

Building and Experimenting Solar Chimney Power Plant

Year 2023, , 301 - 307, 29.12.2023
https://doi.org/10.18466/cbayarfbe.1258484

Abstract

Recently several resources of sustainable and clean energy have been developed, such as solar panels, wind turbines, and others. The Solar Chimney Power Plant (SCPP), which is among those harnessing solar power where a stream of air is induced by adding heat through solar irradiation using the greenhouse effect, is rarely utilized for generating power. The hot air flows through the chimney under the effect of buoyancy force which in turn drives a vertical axis wind turbine. Although this technique is investigated by many reports, unfortunately, it is still in the laboratory phase. However, it might be an optimal solution for zones where operating other techniques is not efficient for various reasons. In this project, an SCPP prototype was built and tested in Anbar, a central province in Iraq. The impact of various design parameters on power generation was assessed. The experimental results prove the feasibility of SCPPs for generating electricity at low costs and the suitability of building SCPPs in countries technologically less developed with specific weather conditions and scarcity in water resources that are normally needed for cleaning solar panels, for example.

Supporting Institution

non

Project Number

non

Thanks

thank you for your effort to make this paper available for publication in your journal

References

  • [1]. S. Pradhan, R. Chakraborty, D.K.K. Mandal, A. Barman, P. Bose, Design and performance analysis of solar chimney power plant (SCPP): A review | Elsevier Enhanced Reader, Sustain. Energy Technol. Assessments. 47 (2021) 101411. https://doi.org/10.1016/J.SETA.2021.101411.
  • [2]. A.T. Layeni, M.A. Waheed, B.A. Adewumi, C.N. Nwaokocha, M. Sharifpur, S.O. Tongo, R.C. Okeze, C.A. Mboreha, Computational and sensitivity analysis of a dual purpose solar chimney for buildings | Elsevier Enhanced Reader, Mater. Today Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.07.292.
  • [3]. A.P. Singh, Akshayveer, A. Kumar, O.P. Singh, Strategies for effective cooling of photovoltaic panels integrated with solar chimney, Mater. Today Proc. 39 (2019) 1950–1954. https://doi.org/10.1016/j.matpr.2020.08.440.
  • [4]. H. Dahire, S.R. Kannan, S.K. Saw, Effect of humidity on the performance of rooftop solar chimney, Therm. Sci. Eng. Prog. (2021) 101026. https://doi.org/10.1016/j.tsep.2021.101026.
  • [5]. A. Soto, P.J. Martínez, P. Martínez, J.A. Tudela, Simulation and experimental study of residential building with north side wind tower assisted by solar chimneys, J. Build. Eng. 43 (2021). https://doi.org/10.1016/j.jobe.2021.102562.
  • [6]. (5) (PDF) The Solar Chimney Electricity from the sun, (n.d.). https://www.researchgate.net/publication/282859303_The_Solar_Chimney_Electricity_from_the_sun (accessed August 26, 2021).
  • [7]. C.W. Kraaijvanger, T. Verma, N. Doorn, J.E. Goncalves, Does the sun shine for all? Revealing socio-spatial inequalities in the transition to solar energy in The Hague, The Netherlands, Energy Res. Soc. Sci. 104 (2023) 103245. https://doi.org/10.1016/j.erss.2023.103245.
  • [8]. S. Salehi, The role of developers in accepting solar energy in Iran: A case study in Golestan province, Sol. Energy. 264 (2023) 111967. https://doi.org/10.1016/j.solener.2023.111967.
  • [9]. M.R. Torabi, M. Hosseini, O.A. Akbari, H.H. Afrouzi, D. Toghraie, A. Kashani, A. Alizadeh, Investigation the performance of solar chimney power plant for improving the efficiency and increasing the outlet power of turbines using computational fluid dynamics, Energy Reports. 7 (2021) 4555–4565. https://doi.org/10.1016/J.EGYR.2021.07.044.
  • [10]. S. Hu, D.Y.C. Leung, J.C.Y. Chan, Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant, Energy. 120 (2017) 1–11. https://doi.org/10.1016/J.ENERGY.2016.12.098.
  • [11] .P. Guo, J. Li, Y.Y. Wang, Y.Y. Wang, Evaluation of the optimal turbine pressure drop ratio for a solar chimney power plant, Energy Convers. Manag. 108 (2016) 14–22. https://doi.org/10.1016/J.ENCONMAN.2015.10.076.
  • [12]. Y. Cao, F. Aldawi, N. Sinaga, H. Moria, H.S. Dizaji, M. Wae-hayee, Single solar chimney technology as a natural free ventilator; energy-environmental case study for Hong Kong, Case Stud. Therm. Eng. 26 (2021) 101173. https://doi.org/10.1016/j.csite.2021.101173.
  • [13]. R.B. Weli, S.A. Atrooshi, R. Schwarze, Investigation of the performance parameters of a sloped collector solar chimney model – An adaptation for the North of Iraq, Renew. Energy. 176 (2021) 504–519. https://doi.org/10.1016/j.renene.2021.05.075.
  • [14]. G. He, Q. Wu, Z. Li, W. Ge, D. Lv, L. Cong, Ventilation performance of solar chimney in a test house: Field measurement and validation of plume model, Build. Environ. 193 (2021). https://doi.org/10.1016/j.buildenv.2021.107648.
  • [15]. B. Belfegas, S. Larbi, T. Tayebi, Experimental and Theoretical Investigation on a Solar Chimney System for Ventilation of a Living Room, Math. Model. Eng. Probl. 8 (2021) 259–266. https://doi.org/10.18280/MMEP.080213.
  • [16]. T. Ming, W. Liu, G. Xu, Analytical and numerical investigation of the solar chimney power plant systems, Int. J. Energy Res. 30 (2006) 861–873. https://doi.org/10.1002/ER.1191.
  • [17]. A. Koonsrisuk, T. Chitsomboon, Mathematical modeling of solar chimney power plants, Energy. 51 (2013) 314–322. https://doi.org/10.1016/j.energy.2012.10.038.
  • [18]. J. yin Li, P. hua Guo, Y. Wang, Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines, Renew. Energy. 47 (2012) 21–28. https://doi.org/10.1016/J.RENENE.2012.03.018.
  • [19]. S. Larbi, A. Bouhdjar, T. Chergui, Performance analysis of a solar chimney power plant in the southwestern region of Algeria, Renew. Sustain. Energy Rev. 14 (2010) 470–477. https://doi.org/10.1016/J.RSER.2009.07.031.
  • [20]. T.W. von Backström, A.J. Gannon, Solar chimney turbine characteristics, Sol. Energy. 76 (2004) 235–241. https://doi.org/10.1016/J.SOLENER.2003.08.009.
  • [21]. M.T. Chaichan, K.I. Abass, H.A. Kazem, (3) (PDF) Dust and Pollution Deposition Impact on a Solar Chimney Performance, (2018). https://www.researchgate.net/publication/323105920_Dust_and_Pollution_Deposition_Impact_on_a_Solar_Chimney_Performance/figures?lo=1 (accessed August 24, 2021).
  • [22]. A.T. Layeni, M.A. Waheed, B.A. Adewumi, B.O. Bolaji, C.N. Nwaokocha, S.O. Giwa, Computational modelling and simulation of the feasibility of a novel dual purpose solar chimney for power generation and passive ventilation in buildings, Sci. African. 8 (2020) e00298. https://doi.org/10.1016/j.sciaf.2020.e00298.
  • [23]. P. Rahdan, A. Kasaeian, W.M. Yan, Simulation and geometric optimization of a hybrid system of solar chimney and water desalination, Energy Convers. Manag. 243 (2021) 114291. https://doi.org/10.1016/j.enconman.2021.114291.
  • [24]. A.J. Jubear, Experimental study of hybrid solar updraft tower with PV panel ( s ), (2021).
  • [25]. F. V Stojkovski, M. Chekerovska, R. V Filkoski, V. Stojkovski, Numerical Modelling of a Solar Chimney Power Plant, Int. J. Contemp. ENERGY. 2 (2016). https://doi.org/10.14621/ce.20160102.
  • [26]. Onur Celik, Colin R. McInnes, A generic three-dimensional model for solar energy reflected from mirrors in circular orbits, Adv. Sp. Res. (under Rev. (2023). https://doi.org/10.1016/j.asr.2023.09.046.
  • [27]. Y. Ledmaoui, A. El Maghraoui, M. El Aroussi, R. Saadane, A. Chebak, A. Chehri, Forecasting solar energy production: A comparative study of machine learning algorithms, Energy Reports. 10 (2023) 1004–1012. https://doi.org/10.1016/j.egyr.2023.07.042.
  • [28]. C. Khelifi, F. Ferroudji, M. Ouali, Analytical modeling and optimization of a solar chimney power plant, Int. J. Eng. Res. Africa. 25 (2016) 78–88. https://doi.org/10.4028/www.scientific.net/JERA.25.78.
  • [29]. Z. Lipnicki, M. Gortych, A. Staszczuk, T. Kuczyński, P. Grabas, Analytical and experimental investigation of the solar chimney system, Energies. 12 (2019). https://doi.org/10.3390/en12112060.
  • [30]. A. Bouchair, Solar chimney for promoting cooling ventilation in southern Algeria, Build. Serv. Eng. Res. Technol. 15 (1994) 81–93. https://doi.org/10.1177/014362449401500203.
  • [31]. J. Schlaich, R. Bergermann, W. Schiel, G. Weinrebe, Design of Commercial Solar Updraft Tower Systems-Utilization of Solar Induced Convective Flows for Power Generation, n.d. http://www.mretreview.gov.au (accessed October 23, 2019).
  • [32]. Lutron SPM-1116SD Solar Energy Meter - Netes Engineering, (n.d.). https://www.netes.com.tr/urun/lutron-spm-1116sd-gunes-enerjisi-olcer#teknik (accessed August 13, 2021).
  • [33]. LM35 datasheet(2/15 Pages) TI1 | LM35 Precision Centigrade Temperature Sensors, (n.d.). https://html.alldatasheet.com/html-pdf/517588/TI1/LM35/108/2/LM35.html (accessed August 13, 2021).
  • [34]. J.P. Pretorius, D.G. Kröger, Sensitivity Analysis of the Operating and Technical Specifications of a Solar Chimney Power Plant, J. Sol. Energy Eng. 129 (2007) 171–178. https://doi.org/10.1115/1.2711473.
  • [35]. X. Zhou, F. Wang, R.M. Ochieng, A review of solar chimney power technology, Renew. Sustain. Energy Rev. 14 (2010) 2315–2338. https://doi.org/10.1016/J.RSER.2010.04.018.
Year 2023, , 301 - 307, 29.12.2023
https://doi.org/10.18466/cbayarfbe.1258484

Abstract

Project Number

non

References

  • [1]. S. Pradhan, R. Chakraborty, D.K.K. Mandal, A. Barman, P. Bose, Design and performance analysis of solar chimney power plant (SCPP): A review | Elsevier Enhanced Reader, Sustain. Energy Technol. Assessments. 47 (2021) 101411. https://doi.org/10.1016/J.SETA.2021.101411.
  • [2]. A.T. Layeni, M.A. Waheed, B.A. Adewumi, C.N. Nwaokocha, M. Sharifpur, S.O. Tongo, R.C. Okeze, C.A. Mboreha, Computational and sensitivity analysis of a dual purpose solar chimney for buildings | Elsevier Enhanced Reader, Mater. Today Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.07.292.
  • [3]. A.P. Singh, Akshayveer, A. Kumar, O.P. Singh, Strategies for effective cooling of photovoltaic panels integrated with solar chimney, Mater. Today Proc. 39 (2019) 1950–1954. https://doi.org/10.1016/j.matpr.2020.08.440.
  • [4]. H. Dahire, S.R. Kannan, S.K. Saw, Effect of humidity on the performance of rooftop solar chimney, Therm. Sci. Eng. Prog. (2021) 101026. https://doi.org/10.1016/j.tsep.2021.101026.
  • [5]. A. Soto, P.J. Martínez, P. Martínez, J.A. Tudela, Simulation and experimental study of residential building with north side wind tower assisted by solar chimneys, J. Build. Eng. 43 (2021). https://doi.org/10.1016/j.jobe.2021.102562.
  • [6]. (5) (PDF) The Solar Chimney Electricity from the sun, (n.d.). https://www.researchgate.net/publication/282859303_The_Solar_Chimney_Electricity_from_the_sun (accessed August 26, 2021).
  • [7]. C.W. Kraaijvanger, T. Verma, N. Doorn, J.E. Goncalves, Does the sun shine for all? Revealing socio-spatial inequalities in the transition to solar energy in The Hague, The Netherlands, Energy Res. Soc. Sci. 104 (2023) 103245. https://doi.org/10.1016/j.erss.2023.103245.
  • [8]. S. Salehi, The role of developers in accepting solar energy in Iran: A case study in Golestan province, Sol. Energy. 264 (2023) 111967. https://doi.org/10.1016/j.solener.2023.111967.
  • [9]. M.R. Torabi, M. Hosseini, O.A. Akbari, H.H. Afrouzi, D. Toghraie, A. Kashani, A. Alizadeh, Investigation the performance of solar chimney power plant for improving the efficiency and increasing the outlet power of turbines using computational fluid dynamics, Energy Reports. 7 (2021) 4555–4565. https://doi.org/10.1016/J.EGYR.2021.07.044.
  • [10]. S. Hu, D.Y.C. Leung, J.C.Y. Chan, Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant, Energy. 120 (2017) 1–11. https://doi.org/10.1016/J.ENERGY.2016.12.098.
  • [11] .P. Guo, J. Li, Y.Y. Wang, Y.Y. Wang, Evaluation of the optimal turbine pressure drop ratio for a solar chimney power plant, Energy Convers. Manag. 108 (2016) 14–22. https://doi.org/10.1016/J.ENCONMAN.2015.10.076.
  • [12]. Y. Cao, F. Aldawi, N. Sinaga, H. Moria, H.S. Dizaji, M. Wae-hayee, Single solar chimney technology as a natural free ventilator; energy-environmental case study for Hong Kong, Case Stud. Therm. Eng. 26 (2021) 101173. https://doi.org/10.1016/j.csite.2021.101173.
  • [13]. R.B. Weli, S.A. Atrooshi, R. Schwarze, Investigation of the performance parameters of a sloped collector solar chimney model – An adaptation for the North of Iraq, Renew. Energy. 176 (2021) 504–519. https://doi.org/10.1016/j.renene.2021.05.075.
  • [14]. G. He, Q. Wu, Z. Li, W. Ge, D. Lv, L. Cong, Ventilation performance of solar chimney in a test house: Field measurement and validation of plume model, Build. Environ. 193 (2021). https://doi.org/10.1016/j.buildenv.2021.107648.
  • [15]. B. Belfegas, S. Larbi, T. Tayebi, Experimental and Theoretical Investigation on a Solar Chimney System for Ventilation of a Living Room, Math. Model. Eng. Probl. 8 (2021) 259–266. https://doi.org/10.18280/MMEP.080213.
  • [16]. T. Ming, W. Liu, G. Xu, Analytical and numerical investigation of the solar chimney power plant systems, Int. J. Energy Res. 30 (2006) 861–873. https://doi.org/10.1002/ER.1191.
  • [17]. A. Koonsrisuk, T. Chitsomboon, Mathematical modeling of solar chimney power plants, Energy. 51 (2013) 314–322. https://doi.org/10.1016/j.energy.2012.10.038.
  • [18]. J. yin Li, P. hua Guo, Y. Wang, Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines, Renew. Energy. 47 (2012) 21–28. https://doi.org/10.1016/J.RENENE.2012.03.018.
  • [19]. S. Larbi, A. Bouhdjar, T. Chergui, Performance analysis of a solar chimney power plant in the southwestern region of Algeria, Renew. Sustain. Energy Rev. 14 (2010) 470–477. https://doi.org/10.1016/J.RSER.2009.07.031.
  • [20]. T.W. von Backström, A.J. Gannon, Solar chimney turbine characteristics, Sol. Energy. 76 (2004) 235–241. https://doi.org/10.1016/J.SOLENER.2003.08.009.
  • [21]. M.T. Chaichan, K.I. Abass, H.A. Kazem, (3) (PDF) Dust and Pollution Deposition Impact on a Solar Chimney Performance, (2018). https://www.researchgate.net/publication/323105920_Dust_and_Pollution_Deposition_Impact_on_a_Solar_Chimney_Performance/figures?lo=1 (accessed August 24, 2021).
  • [22]. A.T. Layeni, M.A. Waheed, B.A. Adewumi, B.O. Bolaji, C.N. Nwaokocha, S.O. Giwa, Computational modelling and simulation of the feasibility of a novel dual purpose solar chimney for power generation and passive ventilation in buildings, Sci. African. 8 (2020) e00298. https://doi.org/10.1016/j.sciaf.2020.e00298.
  • [23]. P. Rahdan, A. Kasaeian, W.M. Yan, Simulation and geometric optimization of a hybrid system of solar chimney and water desalination, Energy Convers. Manag. 243 (2021) 114291. https://doi.org/10.1016/j.enconman.2021.114291.
  • [24]. A.J. Jubear, Experimental study of hybrid solar updraft tower with PV panel ( s ), (2021).
  • [25]. F. V Stojkovski, M. Chekerovska, R. V Filkoski, V. Stojkovski, Numerical Modelling of a Solar Chimney Power Plant, Int. J. Contemp. ENERGY. 2 (2016). https://doi.org/10.14621/ce.20160102.
  • [26]. Onur Celik, Colin R. McInnes, A generic three-dimensional model for solar energy reflected from mirrors in circular orbits, Adv. Sp. Res. (under Rev. (2023). https://doi.org/10.1016/j.asr.2023.09.046.
  • [27]. Y. Ledmaoui, A. El Maghraoui, M. El Aroussi, R. Saadane, A. Chebak, A. Chehri, Forecasting solar energy production: A comparative study of machine learning algorithms, Energy Reports. 10 (2023) 1004–1012. https://doi.org/10.1016/j.egyr.2023.07.042.
  • [28]. C. Khelifi, F. Ferroudji, M. Ouali, Analytical modeling and optimization of a solar chimney power plant, Int. J. Eng. Res. Africa. 25 (2016) 78–88. https://doi.org/10.4028/www.scientific.net/JERA.25.78.
  • [29]. Z. Lipnicki, M. Gortych, A. Staszczuk, T. Kuczyński, P. Grabas, Analytical and experimental investigation of the solar chimney system, Energies. 12 (2019). https://doi.org/10.3390/en12112060.
  • [30]. A. Bouchair, Solar chimney for promoting cooling ventilation in southern Algeria, Build. Serv. Eng. Res. Technol. 15 (1994) 81–93. https://doi.org/10.1177/014362449401500203.
  • [31]. J. Schlaich, R. Bergermann, W. Schiel, G. Weinrebe, Design of Commercial Solar Updraft Tower Systems-Utilization of Solar Induced Convective Flows for Power Generation, n.d. http://www.mretreview.gov.au (accessed October 23, 2019).
  • [32]. Lutron SPM-1116SD Solar Energy Meter - Netes Engineering, (n.d.). https://www.netes.com.tr/urun/lutron-spm-1116sd-gunes-enerjisi-olcer#teknik (accessed August 13, 2021).
  • [33]. LM35 datasheet(2/15 Pages) TI1 | LM35 Precision Centigrade Temperature Sensors, (n.d.). https://html.alldatasheet.com/html-pdf/517588/TI1/LM35/108/2/LM35.html (accessed August 13, 2021).
  • [34]. J.P. Pretorius, D.G. Kröger, Sensitivity Analysis of the Operating and Technical Specifications of a Solar Chimney Power Plant, J. Sol. Energy Eng. 129 (2007) 171–178. https://doi.org/10.1115/1.2711473.
  • [35]. X. Zhou, F. Wang, R.M. Ochieng, A review of solar chimney power technology, Renew. Sustain. Energy Rev. 14 (2010) 2315–2338. https://doi.org/10.1016/J.RSER.2010.04.018.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sohayb Abdulkerim 0000-0002-3448-9129

Mohammed Qaddoori Hammoodi 0009-0007-4219-042X

Mussaab Alshbib 0000-0002-6607-4737

Project Number non
Publication Date December 29, 2023
Published in Issue Year 2023

Cite

APA Abdulkerim, S., Qaddoori Hammoodi, M., & Alshbib, M. (2023). Building and Experimenting Solar Chimney Power Plant. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 19(4), 301-307. https://doi.org/10.18466/cbayarfbe.1258484
AMA Abdulkerim S, Qaddoori Hammoodi M, Alshbib M. Building and Experimenting Solar Chimney Power Plant. CBUJOS. December 2023;19(4):301-307. doi:10.18466/cbayarfbe.1258484
Chicago Abdulkerim, Sohayb, Mohammed Qaddoori Hammoodi, and Mussaab Alshbib. “Building and Experimenting Solar Chimney Power Plant”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 19, no. 4 (December 2023): 301-7. https://doi.org/10.18466/cbayarfbe.1258484.
EndNote Abdulkerim S, Qaddoori Hammoodi M, Alshbib M (December 1, 2023) Building and Experimenting Solar Chimney Power Plant. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 19 4 301–307.
IEEE S. Abdulkerim, M. Qaddoori Hammoodi, and M. Alshbib, “Building and Experimenting Solar Chimney Power Plant”, CBUJOS, vol. 19, no. 4, pp. 301–307, 2023, doi: 10.18466/cbayarfbe.1258484.
ISNAD Abdulkerim, Sohayb et al. “Building and Experimenting Solar Chimney Power Plant”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 19/4 (December 2023), 301-307. https://doi.org/10.18466/cbayarfbe.1258484.
JAMA Abdulkerim S, Qaddoori Hammoodi M, Alshbib M. Building and Experimenting Solar Chimney Power Plant. CBUJOS. 2023;19:301–307.
MLA Abdulkerim, Sohayb et al. “Building and Experimenting Solar Chimney Power Plant”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 19, no. 4, 2023, pp. 301-7, doi:10.18466/cbayarfbe.1258484.
Vancouver Abdulkerim S, Qaddoori Hammoodi M, Alshbib M. Building and Experimenting Solar Chimney Power Plant. CBUJOS. 2023;19(4):301-7.