Research Article
BibTex RIS Cite

Microwave-Assisted Fabrication of Pd, Co and Ni Nanoparticles Modified-SiO2; as Catalysts in the Reduction Reaction of Organic Pollutants

Year 2023, , 323 - 332, 29.12.2023
https://doi.org/10.18466/cbayarfbe.1327271

Abstract

Nanomaterials have been used in catalytic degradation of organic pollutants also act as catalysts in for many years. Due to excellent catalytic performances of metal-based nanoparticles, these materials have been used extensively in various hybrid catalyst synthesis. The main subject of this study, heterogeneous catalysis is a low cost and multi-purpose process for many pollutants. Catalytic degradation of organic pollutants such as; 2-Nitrophenol, Quinolin Yellow and Rhodamine B was investigated by using Ni, Co, Pd nanoparticles modified SiO2 based nanomaterials. The co-doping effect on the prepared nanomaterials has been investigated with different characterization methods in terms of structural and morphological features: scanning electron microscopy, UV/Vis absorption spectroscopy, energy-dispersive X-ray spectroscopy and foruier-transform infrared spectroscopy. The highest catalytic reduction efficiencies (97.6% and 97.5%) for 2-nitrophenol and Rhodamine B was obtained by Pd-PEG-AP@SiO2 respectively. The synthesized Co-PEG-AP@SiO2 illustrated higher catalytic reduction efficiency for Quinolin Yellow (70.1%) at the end of 60s. The prepared M-PEG-AP@SiO2 nanomaterial (M: Pd,Co,Ni) can be able to utilized degradation of organic contaminants effectively.

References

  • [1]. Da’na, E., Taha, A., El-Aassar, M. R. 2023. Catalytic reduction of p-nitrophenol on MnO2/zeolite-13X prepared with lawsonia inermis extract as a stabilizing and capping agent. Nanomaterials, 13(4): 785.
  • [2]. Kumar, R., Barakat, M., Daza, Y., Woodcock, H., Kuhn, J. 2013. EDTA functionalized silica for removal of Cu (II), Zn (II) and Ni (II) from aqueous solution. Journal of Colloid and Interface Science, 408, 200–205.
  • [3]. Fu, Y., Yin, Z., Qin, L., Huang, D., Yi, H., Liu, X., Liu, S., Zhang, M., Li, B., Li, L., Wang, W., Zhou, X., Li, Y., Zeng, G., Lai, C. 2022. Recent progress of noble metals with tailored features in catalytic oxidation for organic pollutants degradation. Journal of Hazardous Materials, 422, 126950.
  • [4]. Ertl, G., Knözinger, H., Weitkamp, J. (Eds.). 1997. Weinheim: VCH. Handbook of heterogeneous catalysis. 2, 427-440.
  • [5]. Colmenares, J. C., Luque, R., Campelo, J. M., Colmenares, F., Karpiński, Z., Romero, A. A. 2009. Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: an overview. Materials, 2(4): 2228-2258.
  • [6]. Hurley, K. D., Shapley, J. R. 2007. Efficient heterogeneous catalytic reduction of perchlorate in water. Environmental Science & Technology, 41(6): 2044-2049.
  • [7]. Kim, K. H., Ihm, S. K. 2011. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. Journal of Hazardous Materials, 186(1): 16-34.
  • [8]. Yao, Y., Cai, Y., Lu, F., Wei, F., Wang, X., Wang, S. 2014. Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. Journal of Hazardous Materials, 270, 61-70.
  • [9]. Wang, J., Zhang, J., Song, Y., Xu, X., Cai, M., Li, P., Yuan, W., Xiahou, Y. 2023. Functionalized agarose hydrogel with in situ Ag nanoparticles as highly recyclable heterogeneous catalyst for aromatic organic pollutants. Environmental Science and Pollution Research, 30(15): 43950-43961
  • [10]. Kim, H. S., Kim, H. J., Kim, J. H., Kim, J. H., Kang, S. H., Ryu, J. H., Park, N. K., Yun, D. S., Bae, J. W. 2022. Noble-metal-based catalytic oxidation technology trends for volatile organic compound (VOC) removal. Catalysts, 12(1): 63.
  • [11]. Cao, S., Wang, C. J., Lv, X. J., Chen, Y., Fu, W. F. 2015. A highly efficient photocatalytic H2 evolution system using colloidal CdS nanorods and nickel nanoparticles in water under visible light irradiation. Applied catalysis B: Environmental, 162, 381-391.
  • [12]. Han, G., Jin, Y. H., Burgess, R. A., Dickenson, N. E., Cao, X. M., Sun, Y. 2017. Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. Journal of the American Chemical Society, 139(44): 15584-15587.
  • [13]. Wang, P., Xu, S., Chen, F., Yu, H. 2019. Ni nanoparticles as electron-transfer mediators and NiSx as interfacial active sites for coordinative enhancement of H2-evolution performance of TiO2. Chinese Journal of Catalysis, 40(3): 343-351.
  • [14]. Zhang, Y., Jin, Z., Yuan, H., Wang, G., Ma, B. 2018. Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS pn heterojunction for efficient photocatalytic hydrogen evolution. Applied Surface Science, 462, 213-225.
  • [15]. Chai, Z., Zeng, T. T., Li, Q., Lu, L. Q., Xiao, W. J., Xu, D. 2016. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. Journal of the American Chemical Society, 138(32): 10128-10131.
  • [16]. Simon, T., Bouchonville, N., Berr, M. J., Vaneski, A., Adrović, A., Volbers, D., Wyrwich, R., Döblinger, M., Susha, A. S., Rogach, A. L., Jackel, F., Stolarczyk, J. K., Feldmann, J. 2014. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nature Materials, 13(11): 1013-1018.
  • [17]. Kim, B., Lee, Y. R., Kim, H. Y., Ahn, W. S. 2018. Adsorption of volatile organic compounds over MIL-125-NH2. Polyhedron, 154, 343-349.
  • [18]. Baughman, G. L., Weber, E. J. 1994. Transformation of dyes and related compounds in anoxic sediment: kinetics and products. Environmental Science & Technology, 28(2): 267-276.
  • [19]. Isari, A. A., Payan, A., Fattahi, M., Jorfi, S., Kakavandi, B. 2018. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Applied Surface Science, 462, 549-564.
  • [20]. Basturk, E., Karatas, M. 2015. Decolorization of antraquinone dye Reactive Blue 181 solution by UV/H2O2 process. Journal of Photochemistry and Photobiology A: Chemistry, 299, 67-72.
  • [21]. Qin, J., Zhang, Q., Chuang, K. T. 2001. Catalytic wet oxidation of p-chlorophenol over supported noble metal catalysts. Applied Catalysis B: Environmental, 29(2): 115-123.
  • [22]. Fujitani, T., Nakamura, J. 2000. The chemical modification seen in the Cu/ZnO methanol synthesis catalysts. Applied Catalysis A: General, 191(1-2): 111-129.
  • [23]. Di Paola, A., Augugliaro, V., Palmisano, L., Pantaleo, G., Savinov, E. 2003. Heterogeneous photocatalytic degradation of nitrophenols. Journal of Photochemistry and Photobiology A: Chemistry, 155(1-3): 207-214.
  • [24]. Naeem, H., Ajmal, M., Khatoon, F., Siddiq, M., Khan, G. S. 2021. Synthesis of graphene oxide–metal nanoparticle nanocomposites for catalytic reduction of nitrocompounds in aqueous medium. Journal of Taibah University for Science, 15(1), 493-506.
  • [25]. Kamal, T., Asiri, A. M., Ali, N. 2021. Catalytic reduction of 4-nitrophenol and methylene blue pollutants in water by copper and nickel nanoparticles decorated polymer sponges. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 261, 120019-120028.
  • [26]. Veisi, H., Ozturk, T., Karmakar, B., Tamoradi, T., Hemmati, S. 2020. In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2-NH2 as magnetic catalyst in Suzuki-Miyaura coupling and 4-nitrophenol reduction. Carbohydrate polymers, 235, 115966-115973.
  • [27]. Nurwahid, I. H., Dimonti, L. C. C., Dwiatmoko, A. A., Ha, J. M., Yunarti, R. T. 2022. Investigation on SiO2 derived from sugarcane bagasse ash and pumice stone as a catalyst support for silver metal in the 4-nitrophenol reduction reaction. Inorganic Chemistry Communications, 135, 109098-109108.
  • [28]. Pal, J., Deb, M. K., Deshmukh, D. K., Sen, B. K. 2014. Microwave-assisted synthesis of platinum nanoparticles and their catalytic degradation of methyl violet in aqueous solution. Applied Nanoscience, 4, 61-65.
  • [29]. Baghbamidi, S. E., Hassankhani, A., Sanchooli, E., Sadeghzadeh, S.M. 2018. The reduction of 4-nitrophenol and 2-nitroaniline by palladium catalyst based on a KCC-1/IL in aqueous solution. Applied Organometallic Chemistry, 32(4): e4251.
  • [30]. Dayan, S. Copper Nanoparticles Supported on a Schiff base-Fullerene as Catalyst for Reduction of Nitrophenols and Organic Dyes. Celal Bayar University Journal of Science, 16 (3), 285-291.
  • [31]. Dayan, S. Performance improvement of Co3O4@ nHAP hybrid nanomaterial in the UV light-supported degradation of organic pollutants and photovoltaics as counter electrode. Journal of Molecular Structure, 1238, 130390.
Year 2023, , 323 - 332, 29.12.2023
https://doi.org/10.18466/cbayarfbe.1327271

Abstract

References

  • [1]. Da’na, E., Taha, A., El-Aassar, M. R. 2023. Catalytic reduction of p-nitrophenol on MnO2/zeolite-13X prepared with lawsonia inermis extract as a stabilizing and capping agent. Nanomaterials, 13(4): 785.
  • [2]. Kumar, R., Barakat, M., Daza, Y., Woodcock, H., Kuhn, J. 2013. EDTA functionalized silica for removal of Cu (II), Zn (II) and Ni (II) from aqueous solution. Journal of Colloid and Interface Science, 408, 200–205.
  • [3]. Fu, Y., Yin, Z., Qin, L., Huang, D., Yi, H., Liu, X., Liu, S., Zhang, M., Li, B., Li, L., Wang, W., Zhou, X., Li, Y., Zeng, G., Lai, C. 2022. Recent progress of noble metals with tailored features in catalytic oxidation for organic pollutants degradation. Journal of Hazardous Materials, 422, 126950.
  • [4]. Ertl, G., Knözinger, H., Weitkamp, J. (Eds.). 1997. Weinheim: VCH. Handbook of heterogeneous catalysis. 2, 427-440.
  • [5]. Colmenares, J. C., Luque, R., Campelo, J. M., Colmenares, F., Karpiński, Z., Romero, A. A. 2009. Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: an overview. Materials, 2(4): 2228-2258.
  • [6]. Hurley, K. D., Shapley, J. R. 2007. Efficient heterogeneous catalytic reduction of perchlorate in water. Environmental Science & Technology, 41(6): 2044-2049.
  • [7]. Kim, K. H., Ihm, S. K. 2011. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. Journal of Hazardous Materials, 186(1): 16-34.
  • [8]. Yao, Y., Cai, Y., Lu, F., Wei, F., Wang, X., Wang, S. 2014. Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. Journal of Hazardous Materials, 270, 61-70.
  • [9]. Wang, J., Zhang, J., Song, Y., Xu, X., Cai, M., Li, P., Yuan, W., Xiahou, Y. 2023. Functionalized agarose hydrogel with in situ Ag nanoparticles as highly recyclable heterogeneous catalyst for aromatic organic pollutants. Environmental Science and Pollution Research, 30(15): 43950-43961
  • [10]. Kim, H. S., Kim, H. J., Kim, J. H., Kim, J. H., Kang, S. H., Ryu, J. H., Park, N. K., Yun, D. S., Bae, J. W. 2022. Noble-metal-based catalytic oxidation technology trends for volatile organic compound (VOC) removal. Catalysts, 12(1): 63.
  • [11]. Cao, S., Wang, C. J., Lv, X. J., Chen, Y., Fu, W. F. 2015. A highly efficient photocatalytic H2 evolution system using colloidal CdS nanorods and nickel nanoparticles in water under visible light irradiation. Applied catalysis B: Environmental, 162, 381-391.
  • [12]. Han, G., Jin, Y. H., Burgess, R. A., Dickenson, N. E., Cao, X. M., Sun, Y. 2017. Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. Journal of the American Chemical Society, 139(44): 15584-15587.
  • [13]. Wang, P., Xu, S., Chen, F., Yu, H. 2019. Ni nanoparticles as electron-transfer mediators and NiSx as interfacial active sites for coordinative enhancement of H2-evolution performance of TiO2. Chinese Journal of Catalysis, 40(3): 343-351.
  • [14]. Zhang, Y., Jin, Z., Yuan, H., Wang, G., Ma, B. 2018. Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS pn heterojunction for efficient photocatalytic hydrogen evolution. Applied Surface Science, 462, 213-225.
  • [15]. Chai, Z., Zeng, T. T., Li, Q., Lu, L. Q., Xiao, W. J., Xu, D. 2016. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. Journal of the American Chemical Society, 138(32): 10128-10131.
  • [16]. Simon, T., Bouchonville, N., Berr, M. J., Vaneski, A., Adrović, A., Volbers, D., Wyrwich, R., Döblinger, M., Susha, A. S., Rogach, A. L., Jackel, F., Stolarczyk, J. K., Feldmann, J. 2014. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nature Materials, 13(11): 1013-1018.
  • [17]. Kim, B., Lee, Y. R., Kim, H. Y., Ahn, W. S. 2018. Adsorption of volatile organic compounds over MIL-125-NH2. Polyhedron, 154, 343-349.
  • [18]. Baughman, G. L., Weber, E. J. 1994. Transformation of dyes and related compounds in anoxic sediment: kinetics and products. Environmental Science & Technology, 28(2): 267-276.
  • [19]. Isari, A. A., Payan, A., Fattahi, M., Jorfi, S., Kakavandi, B. 2018. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Applied Surface Science, 462, 549-564.
  • [20]. Basturk, E., Karatas, M. 2015. Decolorization of antraquinone dye Reactive Blue 181 solution by UV/H2O2 process. Journal of Photochemistry and Photobiology A: Chemistry, 299, 67-72.
  • [21]. Qin, J., Zhang, Q., Chuang, K. T. 2001. Catalytic wet oxidation of p-chlorophenol over supported noble metal catalysts. Applied Catalysis B: Environmental, 29(2): 115-123.
  • [22]. Fujitani, T., Nakamura, J. 2000. The chemical modification seen in the Cu/ZnO methanol synthesis catalysts. Applied Catalysis A: General, 191(1-2): 111-129.
  • [23]. Di Paola, A., Augugliaro, V., Palmisano, L., Pantaleo, G., Savinov, E. 2003. Heterogeneous photocatalytic degradation of nitrophenols. Journal of Photochemistry and Photobiology A: Chemistry, 155(1-3): 207-214.
  • [24]. Naeem, H., Ajmal, M., Khatoon, F., Siddiq, M., Khan, G. S. 2021. Synthesis of graphene oxide–metal nanoparticle nanocomposites for catalytic reduction of nitrocompounds in aqueous medium. Journal of Taibah University for Science, 15(1), 493-506.
  • [25]. Kamal, T., Asiri, A. M., Ali, N. 2021. Catalytic reduction of 4-nitrophenol and methylene blue pollutants in water by copper and nickel nanoparticles decorated polymer sponges. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 261, 120019-120028.
  • [26]. Veisi, H., Ozturk, T., Karmakar, B., Tamoradi, T., Hemmati, S. 2020. In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2-NH2 as magnetic catalyst in Suzuki-Miyaura coupling and 4-nitrophenol reduction. Carbohydrate polymers, 235, 115966-115973.
  • [27]. Nurwahid, I. H., Dimonti, L. C. C., Dwiatmoko, A. A., Ha, J. M., Yunarti, R. T. 2022. Investigation on SiO2 derived from sugarcane bagasse ash and pumice stone as a catalyst support for silver metal in the 4-nitrophenol reduction reaction. Inorganic Chemistry Communications, 135, 109098-109108.
  • [28]. Pal, J., Deb, M. K., Deshmukh, D. K., Sen, B. K. 2014. Microwave-assisted synthesis of platinum nanoparticles and their catalytic degradation of methyl violet in aqueous solution. Applied Nanoscience, 4, 61-65.
  • [29]. Baghbamidi, S. E., Hassankhani, A., Sanchooli, E., Sadeghzadeh, S.M. 2018. The reduction of 4-nitrophenol and 2-nitroaniline by palladium catalyst based on a KCC-1/IL in aqueous solution. Applied Organometallic Chemistry, 32(4): e4251.
  • [30]. Dayan, S. Copper Nanoparticles Supported on a Schiff base-Fullerene as Catalyst for Reduction of Nitrophenols and Organic Dyes. Celal Bayar University Journal of Science, 16 (3), 285-291.
  • [31]. Dayan, S. Performance improvement of Co3O4@ nHAP hybrid nanomaterial in the UV light-supported degradation of organic pollutants and photovoltaics as counter electrode. Journal of Molecular Structure, 1238, 130390.
There are 31 citations in total.

Details

Primary Language English
Subjects Catalysis and Mechanisms of Reactions
Journal Section Articles
Authors

Sevtap Çağlar Yavuz 0000-0001-6497-2907

Emre Yavuz 0000-0002-9599-5412

Serkan Dayan 0000-0003-4171-7297

Publication Date December 29, 2023
Published in Issue Year 2023

Cite

APA Çağlar Yavuz, S., Yavuz, E., & Dayan, S. (2023). Microwave-Assisted Fabrication of Pd, Co and Ni Nanoparticles Modified-SiO2; as Catalysts in the Reduction Reaction of Organic Pollutants. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 19(4), 323-332. https://doi.org/10.18466/cbayarfbe.1327271
AMA Çağlar Yavuz S, Yavuz E, Dayan S. Microwave-Assisted Fabrication of Pd, Co and Ni Nanoparticles Modified-SiO2; as Catalysts in the Reduction Reaction of Organic Pollutants. CBUJOS. December 2023;19(4):323-332. doi:10.18466/cbayarfbe.1327271
Chicago Çağlar Yavuz, Sevtap, Emre Yavuz, and Serkan Dayan. “Microwave-Assisted Fabrication of Pd, Co and Ni Nanoparticles Modified-SiO2; As Catalysts in the Reduction Reaction of Organic Pollutants”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 19, no. 4 (December 2023): 323-32. https://doi.org/10.18466/cbayarfbe.1327271.
EndNote Çağlar Yavuz S, Yavuz E, Dayan S (December 1, 2023) Microwave-Assisted Fabrication of Pd, Co and Ni Nanoparticles Modified-SiO2; as Catalysts in the Reduction Reaction of Organic Pollutants. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 19 4 323–332.
IEEE S. Çağlar Yavuz, E. Yavuz, and S. Dayan, “Microwave-Assisted Fabrication of Pd, Co and Ni Nanoparticles Modified-SiO2; as Catalysts in the Reduction Reaction of Organic Pollutants”, CBUJOS, vol. 19, no. 4, pp. 323–332, 2023, doi: 10.18466/cbayarfbe.1327271.
ISNAD Çağlar Yavuz, Sevtap et al. “Microwave-Assisted Fabrication of Pd, Co and Ni Nanoparticles Modified-SiO2; As Catalysts in the Reduction Reaction of Organic Pollutants”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 19/4 (December 2023), 323-332. https://doi.org/10.18466/cbayarfbe.1327271.
JAMA Çağlar Yavuz S, Yavuz E, Dayan S. Microwave-Assisted Fabrication of Pd, Co and Ni Nanoparticles Modified-SiO2; as Catalysts in the Reduction Reaction of Organic Pollutants. CBUJOS. 2023;19:323–332.
MLA Çağlar Yavuz, Sevtap et al. “Microwave-Assisted Fabrication of Pd, Co and Ni Nanoparticles Modified-SiO2; As Catalysts in the Reduction Reaction of Organic Pollutants”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 19, no. 4, 2023, pp. 323-32, doi:10.18466/cbayarfbe.1327271.
Vancouver Çağlar Yavuz S, Yavuz E, Dayan S. Microwave-Assisted Fabrication of Pd, Co and Ni Nanoparticles Modified-SiO2; as Catalysts in the Reduction Reaction of Organic Pollutants. CBUJOS. 2023;19(4):323-32.