Research Article
BibTex RIS Cite
Year 2017, , 407 - 411, 30.06.2017
https://doi.org/10.18466/cbayarfbe.319904

Abstract

References

  • 1] Muscielek, J. Approximation by Nonlinear Singular Integral Operators In Generalized Orlicz Spaces, Comment. Math., 1991; 31, 79-88.
  • [2] widerski, T.; Wachnicki, E. Nonlinear Singular Integral Depending On Two Parameters, Comment. Math. Prace Mat. 2000; 40, 181–189.
  • [3] Karsli,H. Convergence and Rate of Convergence by Nonlinear Singular Integral Operators Depending on Two Parameters, Appliable Analysis, 2010; 85 (6-7), 781-791.
  • [4] Karsli, H.; Gupta, V. Rate of Convergence of Nonlinear Integral Operators for Functions of Bounded Variation. Calcolo 2008; 45 (2), 87–98.
  • [5] Angeloni, L.; Vinti, G.Convergence in Variation and Rate of Approximation for Nonlinear Integral Operators of Convolution Type, Results in Mathematics, 2006; 49, 1-23.
  • [6] Bardora, C.; Vinti, G.; Karsli,H. Nonlinear Integral Operators with Homogeneous Kernels: Pointwise Approximation Theorems, Applicable Analysis, 2011; 90 (3-4), 463-474.
  • [7] Karsli, H. On Approximation Properties of Non-convolution Type Nonlinear Integral Operators.Anal. Theory Appl. 2010; 26 (2), 140–152.
  • [8] Almali,S. E. and Gadjiev,G.D. On Approximation Properties of Certain Multidimensional Nonlinear Integrals. J. Nonlinear Sci. Appl. 2016; 9 (5), 3090–3097.
  • [9] Bardora, C.; Musceilak, J.; Vinti, G. Nonlinear Integral Operators and Applications. De Grayter Series in Nonlinear Analysis and Applications, Walter de Gruyter & Co., Berlin, 2003; 9, xii+201.
  • [10] Butzer, P.L.; Nessel, R.J. Fourier Analysis and Approximation, Vol. 1, Academic Press, New York,London, 1971.

Approximation of a class of non-linear integral operators / Non-lineer İntegral Operatörlerin Bir Sınıfının Yaklaşımı

Year 2017, , 407 - 411, 30.06.2017
https://doi.org/10.18466/cbayarfbe.319904

Abstract

In this
study,we investigate the problem of pointwise convergence at lebesgue points of
f funtions for the family of non-linear integral operators




                                                      




where  is a real parameter,  is non-negative
kernels and  is the function in . We consider two cases where  is a finite interval
and when is the whole real axis.





References

  • 1] Muscielek, J. Approximation by Nonlinear Singular Integral Operators In Generalized Orlicz Spaces, Comment. Math., 1991; 31, 79-88.
  • [2] widerski, T.; Wachnicki, E. Nonlinear Singular Integral Depending On Two Parameters, Comment. Math. Prace Mat. 2000; 40, 181–189.
  • [3] Karsli,H. Convergence and Rate of Convergence by Nonlinear Singular Integral Operators Depending on Two Parameters, Appliable Analysis, 2010; 85 (6-7), 781-791.
  • [4] Karsli, H.; Gupta, V. Rate of Convergence of Nonlinear Integral Operators for Functions of Bounded Variation. Calcolo 2008; 45 (2), 87–98.
  • [5] Angeloni, L.; Vinti, G.Convergence in Variation and Rate of Approximation for Nonlinear Integral Operators of Convolution Type, Results in Mathematics, 2006; 49, 1-23.
  • [6] Bardora, C.; Vinti, G.; Karsli,H. Nonlinear Integral Operators with Homogeneous Kernels: Pointwise Approximation Theorems, Applicable Analysis, 2011; 90 (3-4), 463-474.
  • [7] Karsli, H. On Approximation Properties of Non-convolution Type Nonlinear Integral Operators.Anal. Theory Appl. 2010; 26 (2), 140–152.
  • [8] Almali,S. E. and Gadjiev,G.D. On Approximation Properties of Certain Multidimensional Nonlinear Integrals. J. Nonlinear Sci. Appl. 2016; 9 (5), 3090–3097.
  • [9] Bardora, C.; Musceilak, J.; Vinti, G. Nonlinear Integral Operators and Applications. De Grayter Series in Nonlinear Analysis and Applications, Walter de Gruyter & Co., Berlin, 2003; 9, xii+201.
  • [10] Butzer, P.L.; Nessel, R.J. Fourier Analysis and Approximation, Vol. 1, Academic Press, New York,London, 1971.
There are 10 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Sevgi Esen Almalı

Publication Date June 30, 2017
Published in Issue Year 2017

Cite

APA Esen Almalı, S. (2017). Approximation of a class of non-linear integral operators / Non-lineer İntegral Operatörlerin Bir Sınıfının Yaklaşımı. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13(2), 407-411. https://doi.org/10.18466/cbayarfbe.319904
AMA Esen Almalı S. Approximation of a class of non-linear integral operators / Non-lineer İntegral Operatörlerin Bir Sınıfının Yaklaşımı. CBUJOS. June 2017;13(2):407-411. doi:10.18466/cbayarfbe.319904
Chicago Esen Almalı, Sevgi. “Approximation of a Class of Non-Linear Integral Operators / Non-Lineer İntegral Operatörlerin Bir Sınıfının Yaklaşımı”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13, no. 2 (June 2017): 407-11. https://doi.org/10.18466/cbayarfbe.319904.
EndNote Esen Almalı S (June 1, 2017) Approximation of a class of non-linear integral operators / Non-lineer İntegral Operatörlerin Bir Sınıfının Yaklaşımı. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13 2 407–411.
IEEE S. Esen Almalı, “Approximation of a class of non-linear integral operators / Non-lineer İntegral Operatörlerin Bir Sınıfının Yaklaşımı”, CBUJOS, vol. 13, no. 2, pp. 407–411, 2017, doi: 10.18466/cbayarfbe.319904.
ISNAD Esen Almalı, Sevgi. “Approximation of a Class of Non-Linear Integral Operators / Non-Lineer İntegral Operatörlerin Bir Sınıfının Yaklaşımı”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13/2 (June 2017), 407-411. https://doi.org/10.18466/cbayarfbe.319904.
JAMA Esen Almalı S. Approximation of a class of non-linear integral operators / Non-lineer İntegral Operatörlerin Bir Sınıfının Yaklaşımı. CBUJOS. 2017;13:407–411.
MLA Esen Almalı, Sevgi. “Approximation of a Class of Non-Linear Integral Operators / Non-Lineer İntegral Operatörlerin Bir Sınıfının Yaklaşımı”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 2, 2017, pp. 407-11, doi:10.18466/cbayarfbe.319904.
Vancouver Esen Almalı S. Approximation of a class of non-linear integral operators / Non-lineer İntegral Operatörlerin Bir Sınıfının Yaklaşımı. CBUJOS. 2017;13(2):407-11.