Research Article
BibTex RIS Cite

Comparison of Cellular Autofluorescence Patterns of Two Model Microalgae by Flow Cytometry

Year 2021, , 159 - 165, 28.06.2021
https://doi.org/10.18466/cbayarfbe.827615

Abstract

Mikroalgler, biyoteknolojik araştırmalarda, özellikle antioksidanlar, sekonder metabolitler, pigmentler, karbohidratlar, proteinler ve lipitler gibi biyokimyasal bileşiklerin üretilmesinde yaygın olarak kullanılmaktadır. Hem deneysel hem de üretim süreçlerinde mikroalglerin değerlendirilmesinde kullanılabilecek çeşitli yöntemlere ihtiyaç duyulmaktadır. Bu yöntemlerden biri olarak akım sitometrisi, mikroalg hücrelerinde nötral ve polar lipit miktarlarının kantifikasyonu ve hücresel morfolojinin saptanmasında kullanılan avantajlı bir seçenektir. Analiz sürecinde etiketleme protokolünü planlamak için hücrelerin otofloresan özelliklerinin hesaba katılması büyük önem taşır. Çünkü otofloresan miktarı, spesifik olarak işaretlenen protein veya lipitlerin floresan sinyali ile çakışabileceğinden, bu moleküllerin tespitini engelleyebilir. Bu durum, hücreler içindeki etiketli bileşiklerin miktarının yanlış anlaşılmasına neden olabilmektedir. Bu çalışmada, endüstriyel önemdeki iki tatlı su mikroalg ümodeli Chlamydomonas reinhardtii (CC-124) ve Chlorella vulgaris’in (CV-898) otofloresan özellikleri akım sitometrisi ölçümleri üzerinden incelenmiştir. Deneysel bulgular, floresan kanal-2'nin, hem (FL2-H) CC-124 hem de CV-898 mikroalg suşlarının minimum otofloresanını elde etmek için en uygun kanal olduğunu göstermiştir. Elde edilen sonuçlar ayrıca florofora karar verirken biyolojik ürünlerin akış sitometrisine dayalı tespiti sırasında CC-124 ve CV-898 hücre hatlarındaki otofloresans sinyallerine dikkat edilmesi gerektiğini ileri sürdü.

Supporting Institution

Karadeniz Technical University

Project Number

FAY-2016-5755

Thanks

This study was supported by Karadeniz Technical University, with the grant number FAY-2016-5755. The author thanks to Ramazan ÇAKMAK for preparations of cells and to Prof. Ersan KALAY from Flow Cytometry Unit of Department of Medical Biology.

References

  • 1. Abomohra, AE-F, Wagner, M, El-Sheekh, M, Hanelt, D. 2013. Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: screening studies towards biodiesel production. Journal of Applied Phycology; 25:931–936.
  • 2. Szpyrka, E, Broda, D, Oklejewicz, B, Podbielska, M, Slowik-Borowiec, M, Jagusztyn B. 2020. A Non-Vector Approach to Increase Lipid Levels in the Microalga Planktochlorella nurekis. Molecules; 25(2):270.
  • 3. da Silva, TL, Reis, A, Medeiros, R, Oliveira, AC, Gouveia L. 2009. Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Applied Biochemistry and Biotechnology; 159:568–578.
  • 4. Benson, RC, Meyer, RA, Zaruba, ME, McKhann, GM. 1979. Cellular autofluorescence--is it due to flavins? Journal of Histochemictry & Cytochemistry; 27:44–48.
  • 5. Uzuner-Celik, S, Peters, L, O’Neill, C. 2016. Quenching of cellular autofluorescence is necessary for specific detection of DNA methylation by flow cytometry compared to microscopy-based analysis. In: FEBS Journal. Kusadasi, TURKEY: FEBSPRESS; p. 249–250.
  • 6. Nezhad, FS, Mansouri, H. 2019. Induction of Polyploidy by Colchicine on the Green Algae Dunaliella salina. Russian Journal of Marine Biology; 45:106–112.
  • 7. Jeon, S-M, Kim, JH, Kim, T, Park, A, Ko, A-R, Ju, S-J. 2015. Morphological, Molecular, and Biochemical Characterization of Monounsaturated Fatty Acids-Rich Chlamydomonas sp. KIOST-1 Isolated from Korea. Journal of Microbiololgy and Biotechnology; 25:723–731.
  • 8. Takahashi, T. 2019. Routine Management of Microalgae Using Autofluorescence from Chlorophyll. Molecules; 24:4441.
  • 9. Takahashi, T. 2018. Applicability of Automated Cell Counter with a Chlorophyll Detector in Routine Management of Microalgae. Scientific Reports; 8:4967.
  • 10. Koç, E, Çelik-Uzuner, S, Uzuner, U, Çakmak, R. 2018. The Detailed Comparison of Cell Death Detected by Annexin V-PI Counterstain Using Fluorescence Microscope, Flow Cytometry and Automated Cell Counter in Mammalian and Microalgae Cells. Journal of Fluorescence; 28:1393–1404.
  • 11. Sonowal, S, Chikkaputtaiah, C, Velmurugan, N. 2019. Role of flow cytometry for the improvement of bioprocessing of oleaginous microorganisms. Journal of Chemical Technology & Biotechnology; 94:1712–1726.
  • 12. Bodénès, P, Wang, HY, Lee, TH, Chen, HY, Wang, CY. 2019. Microfluidic techniques for enhancing biofuel and biorefinery industry based on microalgae. Biotechnology for Biofuels; 12:33.
  • 13. Markina, ZhV. 2019. Flow Cytometry as a Method to Study Marine Unicellular Algae: Development, Problems, and Prospects. Russian Journal of Marine Biology; 45:333–340.
  • 14. Hyka, P, Lickova, S, Přibyl, P, Melzoch, K, Kovar, K. 2013. Flow cytometry for the development of biotechnological processes with microalgae. Biotechnology Advances; 31:2–16.
  • 15. Hadady, H, Redelman, D, Hiibel, SR, Geiger, EJ. 2016. Continuous-flow sorting of microalgae cells based on lipid content by high frequency dielectrophoresis. AIMS Biophysics; 3:398.
  • 16. Grigoryeva N. 2019. Self-Fluorescence of Photosynthetic System: A Powerful Tool for Investigation of Microalgal Biological Diversity. In: Milada V (ed) Microalgae - From Physiology to Application. 2019, pp 1-293.
Year 2021, , 159 - 165, 28.06.2021
https://doi.org/10.18466/cbayarfbe.827615

Abstract

Project Number

FAY-2016-5755

References

  • 1. Abomohra, AE-F, Wagner, M, El-Sheekh, M, Hanelt, D. 2013. Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: screening studies towards biodiesel production. Journal of Applied Phycology; 25:931–936.
  • 2. Szpyrka, E, Broda, D, Oklejewicz, B, Podbielska, M, Slowik-Borowiec, M, Jagusztyn B. 2020. A Non-Vector Approach to Increase Lipid Levels in the Microalga Planktochlorella nurekis. Molecules; 25(2):270.
  • 3. da Silva, TL, Reis, A, Medeiros, R, Oliveira, AC, Gouveia L. 2009. Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Applied Biochemistry and Biotechnology; 159:568–578.
  • 4. Benson, RC, Meyer, RA, Zaruba, ME, McKhann, GM. 1979. Cellular autofluorescence--is it due to flavins? Journal of Histochemictry & Cytochemistry; 27:44–48.
  • 5. Uzuner-Celik, S, Peters, L, O’Neill, C. 2016. Quenching of cellular autofluorescence is necessary for specific detection of DNA methylation by flow cytometry compared to microscopy-based analysis. In: FEBS Journal. Kusadasi, TURKEY: FEBSPRESS; p. 249–250.
  • 6. Nezhad, FS, Mansouri, H. 2019. Induction of Polyploidy by Colchicine on the Green Algae Dunaliella salina. Russian Journal of Marine Biology; 45:106–112.
  • 7. Jeon, S-M, Kim, JH, Kim, T, Park, A, Ko, A-R, Ju, S-J. 2015. Morphological, Molecular, and Biochemical Characterization of Monounsaturated Fatty Acids-Rich Chlamydomonas sp. KIOST-1 Isolated from Korea. Journal of Microbiololgy and Biotechnology; 25:723–731.
  • 8. Takahashi, T. 2019. Routine Management of Microalgae Using Autofluorescence from Chlorophyll. Molecules; 24:4441.
  • 9. Takahashi, T. 2018. Applicability of Automated Cell Counter with a Chlorophyll Detector in Routine Management of Microalgae. Scientific Reports; 8:4967.
  • 10. Koç, E, Çelik-Uzuner, S, Uzuner, U, Çakmak, R. 2018. The Detailed Comparison of Cell Death Detected by Annexin V-PI Counterstain Using Fluorescence Microscope, Flow Cytometry and Automated Cell Counter in Mammalian and Microalgae Cells. Journal of Fluorescence; 28:1393–1404.
  • 11. Sonowal, S, Chikkaputtaiah, C, Velmurugan, N. 2019. Role of flow cytometry for the improvement of bioprocessing of oleaginous microorganisms. Journal of Chemical Technology & Biotechnology; 94:1712–1726.
  • 12. Bodénès, P, Wang, HY, Lee, TH, Chen, HY, Wang, CY. 2019. Microfluidic techniques for enhancing biofuel and biorefinery industry based on microalgae. Biotechnology for Biofuels; 12:33.
  • 13. Markina, ZhV. 2019. Flow Cytometry as a Method to Study Marine Unicellular Algae: Development, Problems, and Prospects. Russian Journal of Marine Biology; 45:333–340.
  • 14. Hyka, P, Lickova, S, Přibyl, P, Melzoch, K, Kovar, K. 2013. Flow cytometry for the development of biotechnological processes with microalgae. Biotechnology Advances; 31:2–16.
  • 15. Hadady, H, Redelman, D, Hiibel, SR, Geiger, EJ. 2016. Continuous-flow sorting of microalgae cells based on lipid content by high frequency dielectrophoresis. AIMS Biophysics; 3:398.
  • 16. Grigoryeva N. 2019. Self-Fluorescence of Photosynthetic System: A Powerful Tool for Investigation of Microalgal Biological Diversity. In: Milada V (ed) Microalgae - From Physiology to Application. 2019, pp 1-293.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Uğur Uzuner 0000-0002-5308-3730

Project Number FAY-2016-5755
Publication Date June 28, 2021
Published in Issue Year 2021

Cite

APA Uzuner, U. (2021). Comparison of Cellular Autofluorescence Patterns of Two Model Microalgae by Flow Cytometry. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 17(2), 159-165. https://doi.org/10.18466/cbayarfbe.827615
AMA Uzuner U. Comparison of Cellular Autofluorescence Patterns of Two Model Microalgae by Flow Cytometry. CBUJOS. June 2021;17(2):159-165. doi:10.18466/cbayarfbe.827615
Chicago Uzuner, Uğur. “Comparison of Cellular Autofluorescence Patterns of Two Model Microalgae by Flow Cytometry”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17, no. 2 (June 2021): 159-65. https://doi.org/10.18466/cbayarfbe.827615.
EndNote Uzuner U (June 1, 2021) Comparison of Cellular Autofluorescence Patterns of Two Model Microalgae by Flow Cytometry. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17 2 159–165.
IEEE U. Uzuner, “Comparison of Cellular Autofluorescence Patterns of Two Model Microalgae by Flow Cytometry”, CBUJOS, vol. 17, no. 2, pp. 159–165, 2021, doi: 10.18466/cbayarfbe.827615.
ISNAD Uzuner, Uğur. “Comparison of Cellular Autofluorescence Patterns of Two Model Microalgae by Flow Cytometry”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17/2 (June 2021), 159-165. https://doi.org/10.18466/cbayarfbe.827615.
JAMA Uzuner U. Comparison of Cellular Autofluorescence Patterns of Two Model Microalgae by Flow Cytometry. CBUJOS. 2021;17:159–165.
MLA Uzuner, Uğur. “Comparison of Cellular Autofluorescence Patterns of Two Model Microalgae by Flow Cytometry”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 17, no. 2, 2021, pp. 159-65, doi:10.18466/cbayarfbe.827615.
Vancouver Uzuner U. Comparison of Cellular Autofluorescence Patterns of Two Model Microalgae by Flow Cytometry. CBUJOS. 2021;17(2):159-65.