Year 2017,
Volume: 13 Issue: 3, 729 - 736, 30.09.2017
Ramazan Sarı
,
Mehmet Akif Akyol
,
Elif Aksoy
References
- Akyol, M. A., Vanli, A. T., Fernandez, L. M., Curvature properties of a semi-symmetric metric
connection on Smanifolds, Ann. Polon. Math. 107(1), (2013), 71-86.
[2] Alegre, P., Semi invariant submanifolds of Lorentzian Sasakian manifold, Demonstratio Mathematica,
XLIV(2), (2011), 391-406.
[3] Alghanemi, A., CRsubmanifolds of a Smanifold, Turkish J. Math. 32 (2008), 141-154.
[4] Bejancu, A., CRsubmanifolds of a Kaehler manifold I, Proc. Am. Math. Soc. 69 (1978),
135-142.
[5] Bejancu, A., Geometry of CR-submanifolds, D. Reidel Pub. Co., (1986).
[6] Bejancu, A., Papaghiuc, N., Semi-invariant submanifolds of a Sasakian manifold, Ann. Stiin.
Univ. Al. I. Cuza. Iasi (serie nova), T. XXVII, Fasc. 1 (1981), 163-170.
[7] Blair, D. E. Geometry of manifolds with structural group U(n) O(s), J. Dier. Geom. 4
(1970), 155-167.
[8] Cabrerizo, J. L., Fernandez L. M., Fernandez, M., The curvature tensor elds on f-manifolds
with complemented frames, An. Sti. Univ. \Al. I. Cuza", Iasi, 36 (1990), 151-161.
SOME PROPERTIES OF CRSUBMANIFOLDS OF AN SMANIFOLDS... 15
[9] Cabrerizo, J. L., Fernandez, L. M., and Fernandez, M., A classication Totally fumblical
submanifolds of an S-manifold, Soochow J. Math. 18(2), (1992), 211-221.
[10] Cabrerizo, J. L., Fernandez, L. M., and Fernandez, M., The curvature of submanifolds of
S-space form, Acta Math. Hung. 62(3-4), (1993), 373-383.
[11] Chandwani, R., Tripathi, M. M., CR-submanifolds of Quasi Smanifolds, Soochow Journal
of Mathematics, Vol. 28, No. 1, (2002), 101-124.
[12] De, U. C., Sengupta, A. K., CR-submanifolds of a Lorentzian para-Sasakian manifold, Bull.
Malays. Math. Sci. Soc. (2) 23 (2000), no. 2, 99^ae\106.
[13] Goldberg, S. I., Yano, K., On normal globally framed manifolds, T^ohoku Math. J., 22 (1970),
362-370.
[14] Hasegawa, I., Okuyama, Y., Abe, T., On p-th Sasakian manifolds, J. Hokkaido Univ. of
Education, Section II A, 37(1), (1986), 1-16.
[15] Fernandez, L. M., CR-products of S-manifold, Portugal Math. 47 (2), (1990), 167-181.
[16] Friedmann, A., Schouten, j. A., Uber di Geometric der halbsymmetrischen Uberrtragung,
Math. Z. 21, (1924), 211-223.
[17] Kobayashi, M., CR-submanifolds of a Sasakian manifold, Tensor N.S. 35 (1981), 297-307.
[18] Mihai, I., CR-subvarietati ale unei f-varietati cu repere complementare, Stud. Cerc. Mat. 35
(2), (1983), 127-136.
[19] Ornea, L., Subvarietati Cauchy-Riemann generice in S-varietati, ibid. 36 (5), (1984), 435-443.
[20] Ozgur, C., Ahmad, M., A. Hasseb, CR-submanifolds of a Lorentzian para-Sasakian manifold
with a semi-symmetric metric connection, Hacet. J. Math. Stat. 39 (2010), no. 4, 489-496.
[21] Vanli, A., Sari, R., On semi invariant submanifolds of a generalized Kenmotsu manifold ad-
mitting a semi-symmetric metric connection, Acta Universitatis Apulensis, 43, (2015), 179-92.
[22] Yano K. On a structure dened by a tensor eld f of type (1,1) satisfying f3 + f = 0: Tensor
N. S. 14, (1963), 99-109.
[23] Yano, K., On
Some Properties of CR-submanifolds of an S-manifold with a Semi-Symmetric Metric Connection
Year 2017,
Volume: 13 Issue: 3, 729 - 736, 30.09.2017
Ramazan Sarı
,
Mehmet Akif Akyol
,
Elif Aksoy
Abstract
We define a semi-symmetric metric connection in an
S-manifold and study CR-submanifolds of an S-manifold with a semi-symmetric
metric connection. Moreover, we also obtain integrability and parallel
conditions of the distributions on CR-submanifolds. Finally, we give some
results of the sectional curvatures of CR-submanifolds of an S-space form with
a semi-symmetric metric connection.
References
- Akyol, M. A., Vanli, A. T., Fernandez, L. M., Curvature properties of a semi-symmetric metric
connection on Smanifolds, Ann. Polon. Math. 107(1), (2013), 71-86.
[2] Alegre, P., Semi invariant submanifolds of Lorentzian Sasakian manifold, Demonstratio Mathematica,
XLIV(2), (2011), 391-406.
[3] Alghanemi, A., CRsubmanifolds of a Smanifold, Turkish J. Math. 32 (2008), 141-154.
[4] Bejancu, A., CRsubmanifolds of a Kaehler manifold I, Proc. Am. Math. Soc. 69 (1978),
135-142.
[5] Bejancu, A., Geometry of CR-submanifolds, D. Reidel Pub. Co., (1986).
[6] Bejancu, A., Papaghiuc, N., Semi-invariant submanifolds of a Sasakian manifold, Ann. Stiin.
Univ. Al. I. Cuza. Iasi (serie nova), T. XXVII, Fasc. 1 (1981), 163-170.
[7] Blair, D. E. Geometry of manifolds with structural group U(n) O(s), J. Dier. Geom. 4
(1970), 155-167.
[8] Cabrerizo, J. L., Fernandez L. M., Fernandez, M., The curvature tensor elds on f-manifolds
with complemented frames, An. Sti. Univ. \Al. I. Cuza", Iasi, 36 (1990), 151-161.
SOME PROPERTIES OF CRSUBMANIFOLDS OF AN SMANIFOLDS... 15
[9] Cabrerizo, J. L., Fernandez, L. M., and Fernandez, M., A classication Totally fumblical
submanifolds of an S-manifold, Soochow J. Math. 18(2), (1992), 211-221.
[10] Cabrerizo, J. L., Fernandez, L. M., and Fernandez, M., The curvature of submanifolds of
S-space form, Acta Math. Hung. 62(3-4), (1993), 373-383.
[11] Chandwani, R., Tripathi, M. M., CR-submanifolds of Quasi Smanifolds, Soochow Journal
of Mathematics, Vol. 28, No. 1, (2002), 101-124.
[12] De, U. C., Sengupta, A. K., CR-submanifolds of a Lorentzian para-Sasakian manifold, Bull.
Malays. Math. Sci. Soc. (2) 23 (2000), no. 2, 99^ae\106.
[13] Goldberg, S. I., Yano, K., On normal globally framed manifolds, T^ohoku Math. J., 22 (1970),
362-370.
[14] Hasegawa, I., Okuyama, Y., Abe, T., On p-th Sasakian manifolds, J. Hokkaido Univ. of
Education, Section II A, 37(1), (1986), 1-16.
[15] Fernandez, L. M., CR-products of S-manifold, Portugal Math. 47 (2), (1990), 167-181.
[16] Friedmann, A., Schouten, j. A., Uber di Geometric der halbsymmetrischen Uberrtragung,
Math. Z. 21, (1924), 211-223.
[17] Kobayashi, M., CR-submanifolds of a Sasakian manifold, Tensor N.S. 35 (1981), 297-307.
[18] Mihai, I., CR-subvarietati ale unei f-varietati cu repere complementare, Stud. Cerc. Mat. 35
(2), (1983), 127-136.
[19] Ornea, L., Subvarietati Cauchy-Riemann generice in S-varietati, ibid. 36 (5), (1984), 435-443.
[20] Ozgur, C., Ahmad, M., A. Hasseb, CR-submanifolds of a Lorentzian para-Sasakian manifold
with a semi-symmetric metric connection, Hacet. J. Math. Stat. 39 (2010), no. 4, 489-496.
[21] Vanli, A., Sari, R., On semi invariant submanifolds of a generalized Kenmotsu manifold ad-
mitting a semi-symmetric metric connection, Acta Universitatis Apulensis, 43, (2015), 179-92.
[22] Yano K. On a structure dened by a tensor eld f of type (1,1) satisfying f3 + f = 0: Tensor
N. S. 14, (1963), 99-109.
[23] Yano, K., On