Research Article
BibTex RIS Cite

Microwave and Infrared Drying Characteristics of Mango Slices

Year 2017, Volume: 13 Issue: 3, 681 - 688, 30.09.2017
https://doi.org/10.18466/cbayarfbe.339337

Abstract

In this study, mango slices were dried with using both microwave and
infrared methods. The microwave and infrared power levels are determined
between 90 – 800W and 75 – 104 W, respectively. The results of this study show that
microwave and infrared power levels have an effect on drying kinetics. Five
thin-layer drying models that were widely used in the literature were applied
to the experimental data and the effective moisture diffusivity, activation
energy and energy consumptions are also calculated. Midilli & Kucuk model
was the best fits of experimental data for both microwave and infrared drying.
The effective moisture diffusivity values were determined to be between 2.28 ×
10-9 and 4.66 × 10-8 m2/s, and 5.07 × 10–10
- 1.27 × 10–9 m2/s for microwave and infrared drying,
respectively. The values of activation energy for microwave and infrared drying
were found as 39.135 and 4.482 kW/kg, respectively.

References

  • 1. Kostermans, A.J.H.G., Bompard, J.M. The Mangoes: Their Botany, Nomenclature, Horticulture and Utilization. Academic Press, London, 1993.
  • 2. FAO (United Nations Food and Agriculture Organization), Statistics Division (2013) Production/Crops of Mangoes Including Mangosteens and Guavas for 2013. Retrieved 13 April 2016.
  • 3. USDA (National Nutrient Database for Standard Reference), https://ndb.nal.usda.gov/ndb/foods/show/2271?fgcd=&manu=&lfacet=&format=&count=&max=35&offset=&sort=&qlookup=mango” Retrieved 13 April 2016.
  • 4. Akoy, E.O.M. Experimental Characterization and Modeling of Thin-Layer Drying of Mango Slices. International Food Research Journal, 2014; 21, 1911-1917.
  • 5. Pan, Z.; Khir, R.; Godfrey, L.D.; Lewis, R.; Thompson, J.R.; Salim, A. Feasibility of Simultaneous Rough Rice Drying and Disinfestations by Infrared Radiation Heating and Rice Milling Quality. Journal of Food Engineering, 2008; 84, 469–479.
  • 6. Doymaz, I.; Kipcak, A.S.; Piskin, S. Characteristics of Thin-layer Infrared Drying of Green Bean. Czech Journal of Food Sci-ence, 2015a; 33, 83–90.
  • 7. Lin, T.M.; Durance, T.D.; Scaman, C.H. Characterization of Vacuum Microwave Air and Freeze Dried Carrot Slices. Food Research International, 1998; 4, 111–117.
  • 8. Sharma, G.P.; Prasad, S. Optimization of Process Parameters for Microwave Drying of Garlic Cloves. Journal of Food Engi-neering, 2006; 75, 441–446.
  • 9. Zielinska, M.; Zapotoczny, P.; Alves-Filho, O.; Eikevik, T.M.; Blaszczak, W. A Multi-Stage Combined Heat Pump and Microwave Vacuum Drying of Green Peas. Journal of Food Engineering, 2013; 115, 347–356.
  • 10. Giri, S.K.; Prasad, S. Drying Kinetics and Rehydration Charac-teristics of Microwave-Vacuum and Convective Hot-Air Dried Mushrooms. Journal of Food Engineering, 1998; 78, 512–521.
  • 11. Bondaruk, J.; Markowski, M.; Błaszczak, W. Effect of Drying Conditions on the Quality of Vacuum-microwave Dried Potato Cubes. Journal of Food Engineering, 2007; 81, 306–312.
  • 12. Bilbao-Sáinz, C.; Andrés, A.; Chiralt, A.; Fito, P. Microwaves Phenomena during Drying of Apple Cylinders. Journal of Food Engineering, 2006; 74, 160–167.
  • 13. Feng, H.; Tang, J.; Mattinson, D.S.; Fellman, J.K. Microwave and Spouted Bed Drying of Frozen Blueberries: The Effect of Drying and Pretreatment Methods on Physical Properties and Retention of Flavor Volatiles. Journal of Food Process Preserva-tion, 1999; 23, 463–479.
  • 14. Yongsawatdigul, J.; Gunasekaran, S.F. Microwave-vacuum Drying of Cranberries: Part II. Quality Evaluation. Journal of Food Process Preservation, 1996; 20, 145–156.
  • 15. Abano, E.E. Kinetics and Quality of Microwave-Assisted Drying of Mango (Mangifera indica). International Journal of Food Science, 2016; Article ID 2037029, http://dx.doi.org/10.1155/2016/2037029.
  • 16. Chayjan, R.A.; Kaveh, M. Drying Characteristics of Eggplant (Solanum melongena L.) Slices under Microwave-convective Drying. Research Agricultural Engineering, 2016; 62, 170-178.
  • 17. Kipcak, A.S. Microwave Drying Kinetics of Mussels (Mytilus edulis). Research Chemistry Intermediation., 2016; DOI: 10.1007/s11164-016-2707-4.
  • 18. Nowak, D.; Lewicki, P.P. Infrared Drying of Apple Slices. Innovative Food Science Emergency and Technology, 2004; 5, 353-360.
  • 19. Adak, N.; Heybeli, N.; Ertekin, C. Infrared Drying of Strawber-ry. Food Chemistry, 2017; 219, 109-116.
  • 20. Ruhanian, S.; Movagharnejad, K. Mathematical Modeling and Experiemntal Analysis of Potato Thin-Layer Drying in An Infra-red-Convective Dryer. Engineering Agricultural and Environmen-tal Food 2016; 9, 84-91.
  • 21. Doymaz, I. Drying of Potato Slices: Effect of Pre-treatments and Mathematical Modeling. Journal of Food Process Preservation, 2012; 36, 310-319. 22. Nasiroglu, S.; Kocabiyik, H. Thin-Layer Infrared Radiation Drying of Red Pepper Slices. Journal of Food Process Engineer-ing, 2009; 32, 1-16.
  • 23. Diamante, L.M.; Ihns, R.; Savage, G.P.; Vanhanen, L. A New Mathematical Model for Thin Layer Drying Fruits. International Journal of Food Science and Technology, 2011; 45, 1956-1962.
  • 24. Dissa, A.O.; Desmorieux, H.; Bathiebo, J.; Koulidiati, J. Con-vective Drying Characteristics of Amelie Mango (Mangifera indica L. cv. ‘Amelie’) with Correction for Shrinkage. Journal of Food Engineering, 2008; 88, 429-437.
  • 25. AOAC. Official Method of Analysis. Association of Official Analytical Chemists , Arlington, 1990.
  • 26. Aghbashlo, M.; Kianmehr, M.H.; Khani, S.; Ghasemi , M. Mathematical Modeling of Carrot Thin-layer Dry¬ing Using New Model. International Agrophysics, 2009; 23, 313–317.
  • 27. Chinenye, N.M.; Ogunlowo, A.S.; Olukunle, O.J. Co¬coa Bean (Theobroma cacao L.) Drying Kinetics. Chilean Journal of Agricultural Research, 2010, 70, 633–639.
  • 28. Midilli, A.; Kucuk, H. Mathematical Modeling of Thin Layer Drying of Pistachio by Using Solar Energy. Energy Convention Management, 2003; 44, 1111-1122.
  • 29. Tunde-Akintunde, T.Y.; Ogunlakin G.O. Mathematical Model-ing of Drying of Pretreated and Untreated Pumpkin. Journal of Food Science and Technology, 2013; 50, 705-713.
  • 30. Sharma, G.P.; Verma, R.C.; Pathare, P.B. Thin-Layer Infrared Radiation Drying of Onion Slices. Journal of Food Engineering, 2005; 67, 361-366.
  • 31. Sarimeseli, A.; Yuceer, M. Investigation of Infrared Drying Behaviour of Spinach Leaves Using ANN Methodology and Dried Product Quality. Chemistry Process Engineering, 2008; 36, 425-436.
  • 32. Arslan, D.; Ozcan, M.M. Study the Effect of Sun, Oven and Microwave Drying on Quality of Onion Slices. LWT—Food Sci-ence Technology, 2010; 43, 1121–1127, 2010.
  • 33. Motevali, A.; Minaei, S.; Khoshtaghaza, M.H.; Kazemi, M.; Nikbakht, A.M. Drying of Pomegranate Arils: Comparison of Predictions from Mathematical Models and Neural Networks. International Journal of Food Engineering, 2010; 6(3), Article 15.
  • 34. Zogzas, N.P.; Maroulis, Z.B.; Marinos-Kouris, D. Mois¬ture Diffusivity Data Compilation in Foodstuffs. Drying Tech¬nology, 1996; 14, 2225-2253
Year 2017, Volume: 13 Issue: 3, 681 - 688, 30.09.2017
https://doi.org/10.18466/cbayarfbe.339337

Abstract

References

  • 1. Kostermans, A.J.H.G., Bompard, J.M. The Mangoes: Their Botany, Nomenclature, Horticulture and Utilization. Academic Press, London, 1993.
  • 2. FAO (United Nations Food and Agriculture Organization), Statistics Division (2013) Production/Crops of Mangoes Including Mangosteens and Guavas for 2013. Retrieved 13 April 2016.
  • 3. USDA (National Nutrient Database for Standard Reference), https://ndb.nal.usda.gov/ndb/foods/show/2271?fgcd=&manu=&lfacet=&format=&count=&max=35&offset=&sort=&qlookup=mango” Retrieved 13 April 2016.
  • 4. Akoy, E.O.M. Experimental Characterization and Modeling of Thin-Layer Drying of Mango Slices. International Food Research Journal, 2014; 21, 1911-1917.
  • 5. Pan, Z.; Khir, R.; Godfrey, L.D.; Lewis, R.; Thompson, J.R.; Salim, A. Feasibility of Simultaneous Rough Rice Drying and Disinfestations by Infrared Radiation Heating and Rice Milling Quality. Journal of Food Engineering, 2008; 84, 469–479.
  • 6. Doymaz, I.; Kipcak, A.S.; Piskin, S. Characteristics of Thin-layer Infrared Drying of Green Bean. Czech Journal of Food Sci-ence, 2015a; 33, 83–90.
  • 7. Lin, T.M.; Durance, T.D.; Scaman, C.H. Characterization of Vacuum Microwave Air and Freeze Dried Carrot Slices. Food Research International, 1998; 4, 111–117.
  • 8. Sharma, G.P.; Prasad, S. Optimization of Process Parameters for Microwave Drying of Garlic Cloves. Journal of Food Engi-neering, 2006; 75, 441–446.
  • 9. Zielinska, M.; Zapotoczny, P.; Alves-Filho, O.; Eikevik, T.M.; Blaszczak, W. A Multi-Stage Combined Heat Pump and Microwave Vacuum Drying of Green Peas. Journal of Food Engineering, 2013; 115, 347–356.
  • 10. Giri, S.K.; Prasad, S. Drying Kinetics and Rehydration Charac-teristics of Microwave-Vacuum and Convective Hot-Air Dried Mushrooms. Journal of Food Engineering, 1998; 78, 512–521.
  • 11. Bondaruk, J.; Markowski, M.; Błaszczak, W. Effect of Drying Conditions on the Quality of Vacuum-microwave Dried Potato Cubes. Journal of Food Engineering, 2007; 81, 306–312.
  • 12. Bilbao-Sáinz, C.; Andrés, A.; Chiralt, A.; Fito, P. Microwaves Phenomena during Drying of Apple Cylinders. Journal of Food Engineering, 2006; 74, 160–167.
  • 13. Feng, H.; Tang, J.; Mattinson, D.S.; Fellman, J.K. Microwave and Spouted Bed Drying of Frozen Blueberries: The Effect of Drying and Pretreatment Methods on Physical Properties and Retention of Flavor Volatiles. Journal of Food Process Preserva-tion, 1999; 23, 463–479.
  • 14. Yongsawatdigul, J.; Gunasekaran, S.F. Microwave-vacuum Drying of Cranberries: Part II. Quality Evaluation. Journal of Food Process Preservation, 1996; 20, 145–156.
  • 15. Abano, E.E. Kinetics and Quality of Microwave-Assisted Drying of Mango (Mangifera indica). International Journal of Food Science, 2016; Article ID 2037029, http://dx.doi.org/10.1155/2016/2037029.
  • 16. Chayjan, R.A.; Kaveh, M. Drying Characteristics of Eggplant (Solanum melongena L.) Slices under Microwave-convective Drying. Research Agricultural Engineering, 2016; 62, 170-178.
  • 17. Kipcak, A.S. Microwave Drying Kinetics of Mussels (Mytilus edulis). Research Chemistry Intermediation., 2016; DOI: 10.1007/s11164-016-2707-4.
  • 18. Nowak, D.; Lewicki, P.P. Infrared Drying of Apple Slices. Innovative Food Science Emergency and Technology, 2004; 5, 353-360.
  • 19. Adak, N.; Heybeli, N.; Ertekin, C. Infrared Drying of Strawber-ry. Food Chemistry, 2017; 219, 109-116.
  • 20. Ruhanian, S.; Movagharnejad, K. Mathematical Modeling and Experiemntal Analysis of Potato Thin-Layer Drying in An Infra-red-Convective Dryer. Engineering Agricultural and Environmen-tal Food 2016; 9, 84-91.
  • 21. Doymaz, I. Drying of Potato Slices: Effect of Pre-treatments and Mathematical Modeling. Journal of Food Process Preservation, 2012; 36, 310-319. 22. Nasiroglu, S.; Kocabiyik, H. Thin-Layer Infrared Radiation Drying of Red Pepper Slices. Journal of Food Process Engineer-ing, 2009; 32, 1-16.
  • 23. Diamante, L.M.; Ihns, R.; Savage, G.P.; Vanhanen, L. A New Mathematical Model for Thin Layer Drying Fruits. International Journal of Food Science and Technology, 2011; 45, 1956-1962.
  • 24. Dissa, A.O.; Desmorieux, H.; Bathiebo, J.; Koulidiati, J. Con-vective Drying Characteristics of Amelie Mango (Mangifera indica L. cv. ‘Amelie’) with Correction for Shrinkage. Journal of Food Engineering, 2008; 88, 429-437.
  • 25. AOAC. Official Method of Analysis. Association of Official Analytical Chemists , Arlington, 1990.
  • 26. Aghbashlo, M.; Kianmehr, M.H.; Khani, S.; Ghasemi , M. Mathematical Modeling of Carrot Thin-layer Dry¬ing Using New Model. International Agrophysics, 2009; 23, 313–317.
  • 27. Chinenye, N.M.; Ogunlowo, A.S.; Olukunle, O.J. Co¬coa Bean (Theobroma cacao L.) Drying Kinetics. Chilean Journal of Agricultural Research, 2010, 70, 633–639.
  • 28. Midilli, A.; Kucuk, H. Mathematical Modeling of Thin Layer Drying of Pistachio by Using Solar Energy. Energy Convention Management, 2003; 44, 1111-1122.
  • 29. Tunde-Akintunde, T.Y.; Ogunlakin G.O. Mathematical Model-ing of Drying of Pretreated and Untreated Pumpkin. Journal of Food Science and Technology, 2013; 50, 705-713.
  • 30. Sharma, G.P.; Verma, R.C.; Pathare, P.B. Thin-Layer Infrared Radiation Drying of Onion Slices. Journal of Food Engineering, 2005; 67, 361-366.
  • 31. Sarimeseli, A.; Yuceer, M. Investigation of Infrared Drying Behaviour of Spinach Leaves Using ANN Methodology and Dried Product Quality. Chemistry Process Engineering, 2008; 36, 425-436.
  • 32. Arslan, D.; Ozcan, M.M. Study the Effect of Sun, Oven and Microwave Drying on Quality of Onion Slices. LWT—Food Sci-ence Technology, 2010; 43, 1121–1127, 2010.
  • 33. Motevali, A.; Minaei, S.; Khoshtaghaza, M.H.; Kazemi, M.; Nikbakht, A.M. Drying of Pomegranate Arils: Comparison of Predictions from Mathematical Models and Neural Networks. International Journal of Food Engineering, 2010; 6(3), Article 15.
  • 34. Zogzas, N.P.; Maroulis, Z.B.; Marinos-Kouris, D. Mois¬ture Diffusivity Data Compilation in Foodstuffs. Drying Tech¬nology, 1996; 14, 2225-2253
There are 33 citations in total.

Details

Journal Section Articles
Authors

İbrahim Doymaz

Publication Date September 30, 2017
Published in Issue Year 2017 Volume: 13 Issue: 3

Cite

APA Doymaz, İ. (2017). Microwave and Infrared Drying Characteristics of Mango Slices. Celal Bayar University Journal of Science, 13(3), 681-688. https://doi.org/10.18466/cbayarfbe.339337
AMA Doymaz İ. Microwave and Infrared Drying Characteristics of Mango Slices. CBUJOS. September 2017;13(3):681-688. doi:10.18466/cbayarfbe.339337
Chicago Doymaz, İbrahim. “Microwave and Infrared Drying Characteristics of Mango Slices”. Celal Bayar University Journal of Science 13, no. 3 (September 2017): 681-88. https://doi.org/10.18466/cbayarfbe.339337.
EndNote Doymaz İ (September 1, 2017) Microwave and Infrared Drying Characteristics of Mango Slices. Celal Bayar University Journal of Science 13 3 681–688.
IEEE İ. Doymaz, “Microwave and Infrared Drying Characteristics of Mango Slices”, CBUJOS, vol. 13, no. 3, pp. 681–688, 2017, doi: 10.18466/cbayarfbe.339337.
ISNAD Doymaz, İbrahim. “Microwave and Infrared Drying Characteristics of Mango Slices”. Celal Bayar University Journal of Science 13/3 (September 2017), 681-688. https://doi.org/10.18466/cbayarfbe.339337.
JAMA Doymaz İ. Microwave and Infrared Drying Characteristics of Mango Slices. CBUJOS. 2017;13:681–688.
MLA Doymaz, İbrahim. “Microwave and Infrared Drying Characteristics of Mango Slices”. Celal Bayar University Journal of Science, vol. 13, no. 3, 2017, pp. 681-8, doi:10.18466/cbayarfbe.339337.
Vancouver Doymaz İ. Microwave and Infrared Drying Characteristics of Mango Slices. CBUJOS. 2017;13(3):681-8.