Research Article
BibTex RIS Cite

A Computational Study on the Nucleophilic Substitution Reaction between 2-Bromoacetophenone and Azole Derivatives

Year 2018, Volume: 14 Issue: 3, 261 - 269, 30.09.2018
https://doi.org/10.18466/cbayarfbe.415975

Abstract

In this study, it was aimed
to investigate the reaction of 2-bromoacetophenone with various azole
derivatives, such as imidazole, benzimidazole, 1,2,4-triazole and benzotriazole
computationally. For this purpose, some Density Functional Theory (DFT) calculations
have been carried out on the reactants and products at B3LYP (Becke,
three-parameter, Lee-Yang-Parr) level of theory using various basis sets,
including 6-31G(d), 6-31G(d,p), 6-311G(d,p) and 6-311+G(2d,p). Geometry
optimizations, Single Point Energy (SPE) calculations, frequency analysis,
frontier molecular orbital calculations, molecular electrostatic potential
(MEP) map calculations, and determination of global reactivity descriptors have
been carried out at the same levels of theory. In NMR calculations, both
Continuous Set of Gauge Transformations (CSGT) and Gauge-Independent Atomic
Orbital (GIAO) methods have been used and computationally obtained data have
been compared with the experimental data.

References

  • 1. Porretta, G.C, Fioravanti, R, Biava, M, Cirilli, R, Simonetti, N, Villa, A, Bello, U, Faccendini, P, Tita, B, research on antibacterial and antifungal agents.10. synthesis and antimicrobial activities of 1-phenyl-2-(1H-azol-1-yl) ethane derivatives - anticonvulsant activity of 1-(4-methylphenyl)-2-(1H-imidazol-1-yl) ethanol, European Journal of Medicinal Chemistry, 1993, 28, 749-760.
  • 2. Guven, O.O, Erdogan, T, Goker, H, Yildiz, S, Synthesis and antimicrobial activity of some novel phenyl and benzimidazole substituted benzyl ethers, Bioorganic & Medicinal Chemistry Letters, 2007, 17, 2233-2236.
  • 3. Rad, M.N.S, Khalafi-Nezhad, A, Behrouz, S, Design and Synthesis of Some Novel Oxiconazole-Like Carboacyclic Nucleoside Analogues, as Potential Chemotherapeutic Agents, Helvetica Chimica Acta, 2009, 92, 1760-1774.
  • 4. Dogan, I.S, Sarac, S, Sari, S, Kart, D, Gokhan, S.E, Vural, I, Dalkara, S, New azole derivatives showing antimicrobial effects and their mechanism of antifungal activity by molecular modeling studies, European Journal of Medicinal Chemistry, 2017, 130, 124-138.
  • 5. Guven, O.O, Erdogan, T, Coles, S.J, Hokelek, T, 2-(1H-benzimidazol-1-yl)-1-phenylethanone, Acta Crystallogr. Sect. E.-Struct Rep. Online, 2008, 64, O1358-U2746.
  • 6. Guven, O.O, Tahtaci, H, Coles, S.J, Hokelek, T, 1-phenyl-2-(1H-1,2,4-triazol-1-yl)ethanone, Acta Crystallogr. Sect. E.-Struct Rep. Online, 2008, 64, O1604-U3253.
  • 7. Oh, K, Nakai, K, Yamada, K, Yoshizawa, Y, Synthesis of novel triazole derivatives as potent inhibitor of allene oxide synthase (CYP74A), a key enzyme in jasmonic acid biosynthesis, Journal of Pesticide Science, 2012, 37, 80-84.
  • 8. Chen, S.Q, Liu, F.M, Synthesis and Crystal Structure of Compound 1-Phenyl-2-(1H-1,2,4-triazolo-yl)-3-phenyl-propen-1-one and 1-Diphenyl-3-(1,2,4-triazolo-yl)-1H,4H-1,5-benzothiazepine, Journal of Chemical Crystallography, 2011, 41, 485-490.
  • 9. Katritzky, A.R, Wrobel, L, Savage, G.P, Deyrupdrewniak, M, The formation of ketones by a reaction equivalent to R-+R'COCH2+- R'COCH2R, Australian Journal of Chemistry, 1990, 43, 133-139.
  • 10. Yousefi, R, Khalafi-Nezhad, A, Rad, M.N.S, Behrouz, S, Panahi, F, Esmaili, M, Ghaffari, S.M, Niazi, A, Moosavi-Movahedi, A.A, Structure-cytotoxicity relationship of a novel series of miconazole-like compounds, Medical Chemistry Research, 2012, 21, 1921-1928.
  • 11. Frisch, M.J, Trucks, G.W, Schlegel, H.B, Scuseria, G.E, Robb, M.A, Cheeseman, J.R, Scalmani, G, Barone, V, Mennucci, B, Petersson, G.A, Nakatsuji, H, Caricato, M, Li, X, Hratchian, H.P, Izmaylov, A.F, Bloino, J, Zheng, G, Sonnenberg, J.L, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Vreven, T, Montgomery, J, J. A. , Peralta, JE, Ogliaro, F, Bearpark, M, Heyd, J.J, Brothers, E, Kudin, K.N, Staroverov, V.N, Keith, T, Kobayashi, R, Normand, J, Raghavachari, K, Rendell, A, Burant, J.C, Iyengar, S.S, Tomasi, J, Cossi, M, Rega, N, Millam, J.M, Klene, M, Knox, JE, Cross, J.B, Bakken, V, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, R.E, Yazyev, O, Austin, A.J, Cammi, R, Pomelli, C, Ochterski, J.W, Martin, R.L, Morokuma, K, Zakrzewski, V.G, Voth, G.A, Salvador, P, Dannenberg, J.J, Dapprich, S, Daniels, A.D, Farkas, O, Foresman, J.B, Ortiz, J.V, Cioslowski, J, Fox, DJ, Gaussian 09. 2013, Gaussian Inc.: Wallingford CT.
  • 12. Hanwell, M.D, Curtis, D.E, Lonie, D.C, Vandermeersch, T, Zurek, E, Hutchison, G.R, Avogadro: An advanced semantic chemical editor, visualization, and analysis platform, Journal of Cheminformatics, 2012, 4, 17.
  • 13. Dennington, R, Keith, T, Millam, J, GaussView, Version 5. 2009, Semichem Inc.: Shawnee Mission, KS.
  • 14. Prasad, P.K, Reddi, R.N, Sudalai, A, Regioselective Oxo-Amination of Alkenes and Enol Ethers with N-Bromosuccinimide–Dimethyl Sulfoxide Combination: A Facile Synthesis of α-Amino-Ketones and Esters, Organic Letters, 2016, 18, 500-503.
  • 15. Chattaraj, P.K, Sarkar, U, Roy, D.R, Electrophilicity index, Chemistry Reviews, 2006, 106, 2065-2091.
  • 16. Mulliken, R.S, A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities, Journal of Chemistry. Physics, 1934, 2, 782.
  • 17. Parr, R.G, Pearson, R.G, Absolute Hardness-Companion Parameter to Absolute Electronegativity, Journal of the American Chemical Society, 1983, 105, 7512-7516.
  • 18. Parr, R.G, Von Szentpaly, L, Liu, S.B, Electrophilicity index, Journal of the American Chemical Society, 1999, 121, 1922-1924.
  • 19. Pearson, R.G, Hard and Soft Acids and Bases HSAB.1.Fundamental Principles, Journal of Chemistry Education, 1968, 45, 581-587.
  • 20. Pearson, R.G, Maximum chemical and physical hardness, Journal of Chemistry Education, 1999, 76, 267-275.
Year 2018, Volume: 14 Issue: 3, 261 - 269, 30.09.2018
https://doi.org/10.18466/cbayarfbe.415975

Abstract

References

  • 1. Porretta, G.C, Fioravanti, R, Biava, M, Cirilli, R, Simonetti, N, Villa, A, Bello, U, Faccendini, P, Tita, B, research on antibacterial and antifungal agents.10. synthesis and antimicrobial activities of 1-phenyl-2-(1H-azol-1-yl) ethane derivatives - anticonvulsant activity of 1-(4-methylphenyl)-2-(1H-imidazol-1-yl) ethanol, European Journal of Medicinal Chemistry, 1993, 28, 749-760.
  • 2. Guven, O.O, Erdogan, T, Goker, H, Yildiz, S, Synthesis and antimicrobial activity of some novel phenyl and benzimidazole substituted benzyl ethers, Bioorganic & Medicinal Chemistry Letters, 2007, 17, 2233-2236.
  • 3. Rad, M.N.S, Khalafi-Nezhad, A, Behrouz, S, Design and Synthesis of Some Novel Oxiconazole-Like Carboacyclic Nucleoside Analogues, as Potential Chemotherapeutic Agents, Helvetica Chimica Acta, 2009, 92, 1760-1774.
  • 4. Dogan, I.S, Sarac, S, Sari, S, Kart, D, Gokhan, S.E, Vural, I, Dalkara, S, New azole derivatives showing antimicrobial effects and their mechanism of antifungal activity by molecular modeling studies, European Journal of Medicinal Chemistry, 2017, 130, 124-138.
  • 5. Guven, O.O, Erdogan, T, Coles, S.J, Hokelek, T, 2-(1H-benzimidazol-1-yl)-1-phenylethanone, Acta Crystallogr. Sect. E.-Struct Rep. Online, 2008, 64, O1358-U2746.
  • 6. Guven, O.O, Tahtaci, H, Coles, S.J, Hokelek, T, 1-phenyl-2-(1H-1,2,4-triazol-1-yl)ethanone, Acta Crystallogr. Sect. E.-Struct Rep. Online, 2008, 64, O1604-U3253.
  • 7. Oh, K, Nakai, K, Yamada, K, Yoshizawa, Y, Synthesis of novel triazole derivatives as potent inhibitor of allene oxide synthase (CYP74A), a key enzyme in jasmonic acid biosynthesis, Journal of Pesticide Science, 2012, 37, 80-84.
  • 8. Chen, S.Q, Liu, F.M, Synthesis and Crystal Structure of Compound 1-Phenyl-2-(1H-1,2,4-triazolo-yl)-3-phenyl-propen-1-one and 1-Diphenyl-3-(1,2,4-triazolo-yl)-1H,4H-1,5-benzothiazepine, Journal of Chemical Crystallography, 2011, 41, 485-490.
  • 9. Katritzky, A.R, Wrobel, L, Savage, G.P, Deyrupdrewniak, M, The formation of ketones by a reaction equivalent to R-+R'COCH2+- R'COCH2R, Australian Journal of Chemistry, 1990, 43, 133-139.
  • 10. Yousefi, R, Khalafi-Nezhad, A, Rad, M.N.S, Behrouz, S, Panahi, F, Esmaili, M, Ghaffari, S.M, Niazi, A, Moosavi-Movahedi, A.A, Structure-cytotoxicity relationship of a novel series of miconazole-like compounds, Medical Chemistry Research, 2012, 21, 1921-1928.
  • 11. Frisch, M.J, Trucks, G.W, Schlegel, H.B, Scuseria, G.E, Robb, M.A, Cheeseman, J.R, Scalmani, G, Barone, V, Mennucci, B, Petersson, G.A, Nakatsuji, H, Caricato, M, Li, X, Hratchian, H.P, Izmaylov, A.F, Bloino, J, Zheng, G, Sonnenberg, J.L, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Vreven, T, Montgomery, J, J. A. , Peralta, JE, Ogliaro, F, Bearpark, M, Heyd, J.J, Brothers, E, Kudin, K.N, Staroverov, V.N, Keith, T, Kobayashi, R, Normand, J, Raghavachari, K, Rendell, A, Burant, J.C, Iyengar, S.S, Tomasi, J, Cossi, M, Rega, N, Millam, J.M, Klene, M, Knox, JE, Cross, J.B, Bakken, V, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, R.E, Yazyev, O, Austin, A.J, Cammi, R, Pomelli, C, Ochterski, J.W, Martin, R.L, Morokuma, K, Zakrzewski, V.G, Voth, G.A, Salvador, P, Dannenberg, J.J, Dapprich, S, Daniels, A.D, Farkas, O, Foresman, J.B, Ortiz, J.V, Cioslowski, J, Fox, DJ, Gaussian 09. 2013, Gaussian Inc.: Wallingford CT.
  • 12. Hanwell, M.D, Curtis, D.E, Lonie, D.C, Vandermeersch, T, Zurek, E, Hutchison, G.R, Avogadro: An advanced semantic chemical editor, visualization, and analysis platform, Journal of Cheminformatics, 2012, 4, 17.
  • 13. Dennington, R, Keith, T, Millam, J, GaussView, Version 5. 2009, Semichem Inc.: Shawnee Mission, KS.
  • 14. Prasad, P.K, Reddi, R.N, Sudalai, A, Regioselective Oxo-Amination of Alkenes and Enol Ethers with N-Bromosuccinimide–Dimethyl Sulfoxide Combination: A Facile Synthesis of α-Amino-Ketones and Esters, Organic Letters, 2016, 18, 500-503.
  • 15. Chattaraj, P.K, Sarkar, U, Roy, D.R, Electrophilicity index, Chemistry Reviews, 2006, 106, 2065-2091.
  • 16. Mulliken, R.S, A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities, Journal of Chemistry. Physics, 1934, 2, 782.
  • 17. Parr, R.G, Pearson, R.G, Absolute Hardness-Companion Parameter to Absolute Electronegativity, Journal of the American Chemical Society, 1983, 105, 7512-7516.
  • 18. Parr, R.G, Von Szentpaly, L, Liu, S.B, Electrophilicity index, Journal of the American Chemical Society, 1999, 121, 1922-1924.
  • 19. Pearson, R.G, Hard and Soft Acids and Bases HSAB.1.Fundamental Principles, Journal of Chemistry Education, 1968, 45, 581-587.
  • 20. Pearson, R.G, Maximum chemical and physical hardness, Journal of Chemistry Education, 1999, 76, 267-275.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Taner Erdoğan

Publication Date September 30, 2018
Published in Issue Year 2018 Volume: 14 Issue: 3

Cite

APA Erdoğan, T. (2018). A Computational Study on the Nucleophilic Substitution Reaction between 2-Bromoacetophenone and Azole Derivatives. Celal Bayar University Journal of Science, 14(3), 261-269. https://doi.org/10.18466/cbayarfbe.415975
AMA Erdoğan T. A Computational Study on the Nucleophilic Substitution Reaction between 2-Bromoacetophenone and Azole Derivatives. CBUJOS. September 2018;14(3):261-269. doi:10.18466/cbayarfbe.415975
Chicago Erdoğan, Taner. “A Computational Study on the Nucleophilic Substitution Reaction Between 2-Bromoacetophenone and Azole Derivatives”. Celal Bayar University Journal of Science 14, no. 3 (September 2018): 261-69. https://doi.org/10.18466/cbayarfbe.415975.
EndNote Erdoğan T (September 1, 2018) A Computational Study on the Nucleophilic Substitution Reaction between 2-Bromoacetophenone and Azole Derivatives. Celal Bayar University Journal of Science 14 3 261–269.
IEEE T. Erdoğan, “A Computational Study on the Nucleophilic Substitution Reaction between 2-Bromoacetophenone and Azole Derivatives”, CBUJOS, vol. 14, no. 3, pp. 261–269, 2018, doi: 10.18466/cbayarfbe.415975.
ISNAD Erdoğan, Taner. “A Computational Study on the Nucleophilic Substitution Reaction Between 2-Bromoacetophenone and Azole Derivatives”. Celal Bayar University Journal of Science 14/3 (September 2018), 261-269. https://doi.org/10.18466/cbayarfbe.415975.
JAMA Erdoğan T. A Computational Study on the Nucleophilic Substitution Reaction between 2-Bromoacetophenone and Azole Derivatives. CBUJOS. 2018;14:261–269.
MLA Erdoğan, Taner. “A Computational Study on the Nucleophilic Substitution Reaction Between 2-Bromoacetophenone and Azole Derivatives”. Celal Bayar University Journal of Science, vol. 14, no. 3, 2018, pp. 261-9, doi:10.18466/cbayarfbe.415975.
Vancouver Erdoğan T. A Computational Study on the Nucleophilic Substitution Reaction between 2-Bromoacetophenone and Azole Derivatives. CBUJOS. 2018;14(3):261-9.