Research Article
BibTex RIS Cite

STUDY OF THE CHANGE IN ANTIOXIDATIVE ENZYME ACTIVITIES, METAL ACCUMULATION, SOME PHYSIOLOGICAL AND GROWTH PARAMETERS OF SHOOT AND ROOT IN ROCA (ERUCA SATIVA) PLANT

Year 2010, Volume: 6 Issue: 2, 105 - 120, 01.06.2010

Abstract

In this study, we aimed to compare some antioxidative responses, which is associated with the growth reduction, of shoots and roots of Eruca sativa plant in the presence of different concentration of Mn+2 (10 - 5000 µM) or Fe+2 (50 – 5000 µM). The excess of Mn+2 or Fe+2 caused a significant inhibition on the plant growth. Significant increases in MDA, SOD, GPX, proline, electrolytic leakage and H2O2 levels were observed in both shoots and roots stressed under Mn+2 and Fe+2. Mn+2 treatment caused a greater decrease in growth than Fe+2 treatment in both tissues. The contents of total chlorophyll and carotenoid in the leaves of the plant were also reduced by the increasing the Mn+2 or Fe+2 concentrations. Cu uptake was increased in the presence of excess Mn+2 in both tissues, although Fe+2 and Zn+2 contents were significantly reduced. Consequently, it can be concluded, that the high Mn+2 or Fe+2 contents in growth media can be the responsible for the growth inhibition by enhancing the oxidative stress. 

References

  • Aebi, H. 1974. Catalases In: H.U. Bergmeyer, Editors, Methods of enzymatic analysis Vol. 2, Academic Press, NY 673– 684.
  • Bates, L.S., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39: 205– 207.
  • Beyer, F.W. and I. Fridovich. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochem. 161: 559-566.
  • Bisht, S.S., B.D. Nautiyal and C.P. Sharma. 2002. Biochemical changes under iron deficiency and recovery in tomato. Ind. J. Plant Physiol. 7: 183-186.
  • Boscolo, P.R.S., M. Menossi and R.A. Jorge. 2003. Aliminium-induced oxidative stress in maize. Phytochemistry. 62: 181- 189.Bowler, C., M.V. Montagu and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 83–116
  • Çakmak, I. and W.J. Host. 1991. Effects of aluminium superoxide peroxidase activities in root of soybean (Glycine max). Physiol. Plant. 83: 463-468.
  • De Vos, C.H.R., R. Vooijs, H. Schat and W.H.O. Ernst. 1989. Copper induced damage to permeability barrier in roots of siline Physiology.135: 165-169. of Plant
  • Devi, S.R. and M.N.V. Prasad. 1998. Copper demersum L. (Coontail), a free floating macrophyte: enzymes and antioxidants. Plant Sci. 138: 157–165. Ceratophyllum response of antioxidant
  • Elamin, O.M. and G.E. Wilcox. 1986. Effects of magnesium and manganese nutrition on muskmelon growth and manganese toxicity. J. Am. Soc. Hort. Sci. 111: 582–587.
  • El-Jaoual T. and D.A. Cox. 1998. Manganese toxicity in plants. J. Plant Nutr. 21: 353–386.
  • Fecht-Christoffers, M.M., P. Maier and W.J. Horst. 2003. Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiol. Plant. 117: 237–244.
  • Foy, D., B.J. Scott and J.A. Fisher. 1988. Genetic differences in plant tolerance to manganese toxicity. in: R.D. Graham, R.J. Hannam, N.C. Uren (Eds.), Manganese in Soils and Plants, Kluwer Academic Publishers, Dordrecht. 293–307.
  • Foyer, C.H., P. Descourviéres and K.J. Kunert. 1994. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ. 17. 507–523.
  • Goos, R.J., B. Johnson, G. Javkson and G. Hargrove. 2004. Greenhouse evaluation of controlled soybean. J. Plant Nutr. 27: 43-55. fertilizers for
  • Gupta, M., A. Cuypers, J. Vangronsveld and H. Clijsters. 1999. Cooper affects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseulus vulgaris. Physiol. Plant. 106: 262-267.
  • Halliwell, B. and J.M.C. Gutteridge 1985. Free Radicals in Biology and Medicine, Clarendon Press, Oxford. 1-51.
  • Hauck, M., A. Paul, S. Gross and M. Raubuch. 2003. Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus. Environ. Exp. Bot. 49: 181–191. 18. Heath, R.L. and L. Packer. 1968.
  • Photoperoxidation in isolated chloroplasts.
  • I. Kinetics and toichiometry of fatty acid
  • peroxidation. Arch. Biochem. Biophys. 125: 189–198.
  • Hegedüs, A., S. Erdei and G. Horvath. 2001. Comparative studies of H2O2 detoxifying enzymes in gren and greening barley seedlings under cadmium stress. Plant Science. 160: 1085-1093.
  • Horst, W.J. 1988. The physiology of manganese toxicity. in: R.D. Graham, R.J. Hannam, N.C. Uren (Eds.), Manganese in Soils and Plants, Kluwer Academic Publishers, Dordrecht, 175–188.
  • Hue, N.V., S. Vega and J.A. Silva. 2001. Manganese toxicity in a Hawaiian Oxisol affected amendments. Soil Sci. Soc. Am. J. 65: 153– 160. and organic
  • Ishikawa, T., R. Madhusudhan and S. Shigeoka. 2003. Effect of iron on the expression of ascorbate peroxidase in Euglena gracilis. Plant Science. 165: 1363- 1367.
  • Jana, S. and M.A. Choudhuri. 1981. Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot. 12: 345–354.
  • Janda, T., G. Szalai, K. Rioa-Gonzalez, O. Veisa and E. Páldi. 2003. Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci. 164: 301–306.
  • Lichtenthaler, H.K. and W.R. Wellburn. 1983. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11: 591–592.
  • Lidon, F.C., M.G. Barreiro and C. Ramalho. 2004. Manganese accumulation in rice: İmplications for photosynthetic functioning. J. Plant Physiol. 161: 1235- 1244.
  • Macfie S.M. and G.J. Taylor. 1992. The excess effects photosynthetic rate and concentration of chlorophyll in Triticum aestivum grown in solution culture. Physiol. Plant. 85: 467– 475 manganese on
  • Marschner, H. 1998. Mineral Nutrition of Higher Plants, Academic Press, London.
  • Molassiotis, A., I. Therios, K. Dimassi, G. Diamantidis and C.Chatzissavvidis. 2005. Induction of Fe(III)-chelate reductase activity by ethylene and salicylic acid in iron-deficient peach rootstock explants. Journal of Plant Nutrition. 28: 669–682.
  • Morito, S., H. Kaminaka, T. Masumura and K. Tanaka. 1999. Induction of rice cytosolic APX mRNA by oxidative stress the involvement of H2O2 in oxidative stress signaling. Plant Cell Physiol. 40: 417-422.
  • Nakano Y. and K. Asada. 1981. Hydrogen peroxide scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiol. 22: 867–880.
  • Nikolic, M. and R. Kastori. 2000. Effect of bicarbonate and Fe+2 supply on Fe nutrition of grapevine. J. Plant Nutr. 23: 1619-1627.
  • Ohki, K. 1984. Manganese deficiency and toxicity effects on growth, development and nutrient composition in wheat. Agron. J. 76: 213–218.
  • Paul, M., A. Hauck and E. Fritz. 2003. Effects distribution and structure in thalli of the epiphytic lichens HypogyMn+2 ia physodes and Lecanora conizaeoides. Environ. Exp. Bot. 50: 113–124. on element
  • Prasad, T.K., M.D. Anderson, B.A. Martin and C.R. Stewart. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell. 6: 65–74
  • Quartin, V., J.C. Ramalho and M.A. Nunes. 1988. Responses of biomass and several photosynthetic indicators to manganese excess in triticale. J. Plant Nutr. 21: 1615– 1629.
  • Rout, G.R., S. Samantaray and P. Das. 1999. In vitro selection and biochemical characterization of Zn and Mn+2 adapted callus lines in Brassica spp. Plant Sci. 146: 89-100.
  • Schutzendubel, A. and A. Polle. 2002. Plant response to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53: 1351-1365.
  • Shah, K., R.G. Kumar, S. Verma and R.S. Dubey. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 161: 1135–1144.
  • Sinha, S., M. Gupta and P. Chandra. 1997. Oxidative stress induced by iron in hydrilla verticillata (l.f) Royle: Response of antioxidants. Ecotoxicology and Envr. Safety. 38: 286-291.
  • Tal, M. 1983. Selection of stress tolerance. in: D.A Evans, W.R. Ammirato, Yamada, Y. (Eds.), Hand book of Plant Cell Culture, MacMillan, New York. 1: 461-488. Sharp, P.V.
  • Van Breusegem, F.V., E. Vranova, J.F. Dat and D. Inzé. 2001. The role of active oxygen species in plant signal transduction. Plant Sci. 161: 405–414.
  • Wilkinson R.E. and K. Ohki. 1988. Influence of manganese deficiency and toxicity on isoprenoid synthesis. Plant Physiol. 87: 841–846.
  • Xiong L. and J.K. Zhou. 2002. Molecular and genetic aspects of plant response to osmotic stress. Plant Cell Environ. 25: 131- 139.
  • Geliş Tarihi:24/08/2010
  • Kabul Tarihi:28/09/2010

ROKA (ERUCA SATİVA) BİTKİSİNİN KÖK VE GÖVDESİNDEKİ ANTİOKSİDAN ENZİM AKTİVİTELERİ, METAL BİRİKİMİ, BAZI FİZYOLOJİK VE BÜYÜME PARAMETRELERİNDEKİ DEĞİŞİMLERİN ARAŞTIRILMASI

Year 2010, Volume: 6 Issue: 2, 105 - 120, 01.06.2010

Abstract

Bu çalışmada, farklı Mn+2 (10 - 5000 µM) veya Fe+2 (50 – 5000 µM) konsantrasyonlarının varlığında Eruca sativa bitkisindeki büyüme geriliği ile ilişkili olarak köklerde ve gövdede antioksidatif cevabın karşılaştırılmasını amaçladık. Aşırı Mn+2 veya Fe+2 bitkilerin büyümesini anlamlı olarak inhibe etti. Her iki dokuda da, Mn+2 ve Fe+2 stresinde MDA, prolin ve H2O2 seviyelerinde, elektrolitik iletkenlik, SOD ve GPX aktivitelerinde anlamlı artış izlendi. Eruca sativa bitkisinde, dışarıdan artan konsantrasyonlarda uygulanan Mn+2 ve Fe+2, bitkinin köklerinde ve gövdesinde uygulanan metalin aşırı birikimine sebep oldu. Aşırı Mn+2 köklerde ve gövdede Fe+2 ve Zn+2 alınımını anlamlı olarak azaltırken Cu içeriğini arttırdı. Sonuç olarak, yüksek Mn+2 veya Fe+2 içeriği oksidatif stresi arttırarak büyümenin baskılanmasından sorumlu tutulabilir.

References

  • Aebi, H. 1974. Catalases In: H.U. Bergmeyer, Editors, Methods of enzymatic analysis Vol. 2, Academic Press, NY 673– 684.
  • Bates, L.S., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39: 205– 207.
  • Beyer, F.W. and I. Fridovich. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochem. 161: 559-566.
  • Bisht, S.S., B.D. Nautiyal and C.P. Sharma. 2002. Biochemical changes under iron deficiency and recovery in tomato. Ind. J. Plant Physiol. 7: 183-186.
  • Boscolo, P.R.S., M. Menossi and R.A. Jorge. 2003. Aliminium-induced oxidative stress in maize. Phytochemistry. 62: 181- 189.Bowler, C., M.V. Montagu and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 83–116
  • Çakmak, I. and W.J. Host. 1991. Effects of aluminium superoxide peroxidase activities in root of soybean (Glycine max). Physiol. Plant. 83: 463-468.
  • De Vos, C.H.R., R. Vooijs, H. Schat and W.H.O. Ernst. 1989. Copper induced damage to permeability barrier in roots of siline Physiology.135: 165-169. of Plant
  • Devi, S.R. and M.N.V. Prasad. 1998. Copper demersum L. (Coontail), a free floating macrophyte: enzymes and antioxidants. Plant Sci. 138: 157–165. Ceratophyllum response of antioxidant
  • Elamin, O.M. and G.E. Wilcox. 1986. Effects of magnesium and manganese nutrition on muskmelon growth and manganese toxicity. J. Am. Soc. Hort. Sci. 111: 582–587.
  • El-Jaoual T. and D.A. Cox. 1998. Manganese toxicity in plants. J. Plant Nutr. 21: 353–386.
  • Fecht-Christoffers, M.M., P. Maier and W.J. Horst. 2003. Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiol. Plant. 117: 237–244.
  • Foy, D., B.J. Scott and J.A. Fisher. 1988. Genetic differences in plant tolerance to manganese toxicity. in: R.D. Graham, R.J. Hannam, N.C. Uren (Eds.), Manganese in Soils and Plants, Kluwer Academic Publishers, Dordrecht. 293–307.
  • Foyer, C.H., P. Descourviéres and K.J. Kunert. 1994. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ. 17. 507–523.
  • Goos, R.J., B. Johnson, G. Javkson and G. Hargrove. 2004. Greenhouse evaluation of controlled soybean. J. Plant Nutr. 27: 43-55. fertilizers for
  • Gupta, M., A. Cuypers, J. Vangronsveld and H. Clijsters. 1999. Cooper affects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseulus vulgaris. Physiol. Plant. 106: 262-267.
  • Halliwell, B. and J.M.C. Gutteridge 1985. Free Radicals in Biology and Medicine, Clarendon Press, Oxford. 1-51.
  • Hauck, M., A. Paul, S. Gross and M. Raubuch. 2003. Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus. Environ. Exp. Bot. 49: 181–191. 18. Heath, R.L. and L. Packer. 1968.
  • Photoperoxidation in isolated chloroplasts.
  • I. Kinetics and toichiometry of fatty acid
  • peroxidation. Arch. Biochem. Biophys. 125: 189–198.
  • Hegedüs, A., S. Erdei and G. Horvath. 2001. Comparative studies of H2O2 detoxifying enzymes in gren and greening barley seedlings under cadmium stress. Plant Science. 160: 1085-1093.
  • Horst, W.J. 1988. The physiology of manganese toxicity. in: R.D. Graham, R.J. Hannam, N.C. Uren (Eds.), Manganese in Soils and Plants, Kluwer Academic Publishers, Dordrecht, 175–188.
  • Hue, N.V., S. Vega and J.A. Silva. 2001. Manganese toxicity in a Hawaiian Oxisol affected amendments. Soil Sci. Soc. Am. J. 65: 153– 160. and organic
  • Ishikawa, T., R. Madhusudhan and S. Shigeoka. 2003. Effect of iron on the expression of ascorbate peroxidase in Euglena gracilis. Plant Science. 165: 1363- 1367.
  • Jana, S. and M.A. Choudhuri. 1981. Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot. 12: 345–354.
  • Janda, T., G. Szalai, K. Rioa-Gonzalez, O. Veisa and E. Páldi. 2003. Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci. 164: 301–306.
  • Lichtenthaler, H.K. and W.R. Wellburn. 1983. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11: 591–592.
  • Lidon, F.C., M.G. Barreiro and C. Ramalho. 2004. Manganese accumulation in rice: İmplications for photosynthetic functioning. J. Plant Physiol. 161: 1235- 1244.
  • Macfie S.M. and G.J. Taylor. 1992. The excess effects photosynthetic rate and concentration of chlorophyll in Triticum aestivum grown in solution culture. Physiol. Plant. 85: 467– 475 manganese on
  • Marschner, H. 1998. Mineral Nutrition of Higher Plants, Academic Press, London.
  • Molassiotis, A., I. Therios, K. Dimassi, G. Diamantidis and C.Chatzissavvidis. 2005. Induction of Fe(III)-chelate reductase activity by ethylene and salicylic acid in iron-deficient peach rootstock explants. Journal of Plant Nutrition. 28: 669–682.
  • Morito, S., H. Kaminaka, T. Masumura and K. Tanaka. 1999. Induction of rice cytosolic APX mRNA by oxidative stress the involvement of H2O2 in oxidative stress signaling. Plant Cell Physiol. 40: 417-422.
  • Nakano Y. and K. Asada. 1981. Hydrogen peroxide scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiol. 22: 867–880.
  • Nikolic, M. and R. Kastori. 2000. Effect of bicarbonate and Fe+2 supply on Fe nutrition of grapevine. J. Plant Nutr. 23: 1619-1627.
  • Ohki, K. 1984. Manganese deficiency and toxicity effects on growth, development and nutrient composition in wheat. Agron. J. 76: 213–218.
  • Paul, M., A. Hauck and E. Fritz. 2003. Effects distribution and structure in thalli of the epiphytic lichens HypogyMn+2 ia physodes and Lecanora conizaeoides. Environ. Exp. Bot. 50: 113–124. on element
  • Prasad, T.K., M.D. Anderson, B.A. Martin and C.R. Stewart. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell. 6: 65–74
  • Quartin, V., J.C. Ramalho and M.A. Nunes. 1988. Responses of biomass and several photosynthetic indicators to manganese excess in triticale. J. Plant Nutr. 21: 1615– 1629.
  • Rout, G.R., S. Samantaray and P. Das. 1999. In vitro selection and biochemical characterization of Zn and Mn+2 adapted callus lines in Brassica spp. Plant Sci. 146: 89-100.
  • Schutzendubel, A. and A. Polle. 2002. Plant response to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53: 1351-1365.
  • Shah, K., R.G. Kumar, S. Verma and R.S. Dubey. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 161: 1135–1144.
  • Sinha, S., M. Gupta and P. Chandra. 1997. Oxidative stress induced by iron in hydrilla verticillata (l.f) Royle: Response of antioxidants. Ecotoxicology and Envr. Safety. 38: 286-291.
  • Tal, M. 1983. Selection of stress tolerance. in: D.A Evans, W.R. Ammirato, Yamada, Y. (Eds.), Hand book of Plant Cell Culture, MacMillan, New York. 1: 461-488. Sharp, P.V.
  • Van Breusegem, F.V., E. Vranova, J.F. Dat and D. Inzé. 2001. The role of active oxygen species in plant signal transduction. Plant Sci. 161: 405–414.
  • Wilkinson R.E. and K. Ohki. 1988. Influence of manganese deficiency and toxicity on isoprenoid synthesis. Plant Physiol. 87: 841–846.
  • Xiong L. and J.K. Zhou. 2002. Molecular and genetic aspects of plant response to osmotic stress. Plant Cell Environ. 25: 131- 139.
  • Geliş Tarihi:24/08/2010
  • Kabul Tarihi:28/09/2010
There are 48 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Seda Çınar Becerik This is me

Tülini Aydemir

Publication Date June 1, 2010
Published in Issue Year 2010 Volume: 6 Issue: 2

Cite

APA Becerik, S. Ç., & Aydemir, T. (2010). STUDY OF THE CHANGE IN ANTIOXIDATIVE ENZYME ACTIVITIES, METAL ACCUMULATION, SOME PHYSIOLOGICAL AND GROWTH PARAMETERS OF SHOOT AND ROOT IN ROCA (ERUCA SATIVA) PLANT. Celal Bayar University Journal of Science, 6(2), 105-120.
AMA Becerik SÇ, Aydemir T. STUDY OF THE CHANGE IN ANTIOXIDATIVE ENZYME ACTIVITIES, METAL ACCUMULATION, SOME PHYSIOLOGICAL AND GROWTH PARAMETERS OF SHOOT AND ROOT IN ROCA (ERUCA SATIVA) PLANT. CBUJOS. June 2010;6(2):105-120.
Chicago Becerik, Seda Çınar, and Tülini Aydemir. “STUDY OF THE CHANGE IN ANTIOXIDATIVE ENZYME ACTIVITIES, METAL ACCUMULATION, SOME PHYSIOLOGICAL AND GROWTH PARAMETERS OF SHOOT AND ROOT IN ROCA (ERUCA SATIVA) PLANT”. Celal Bayar University Journal of Science 6, no. 2 (June 2010): 105-20.
EndNote Becerik SÇ, Aydemir T (June 1, 2010) STUDY OF THE CHANGE IN ANTIOXIDATIVE ENZYME ACTIVITIES, METAL ACCUMULATION, SOME PHYSIOLOGICAL AND GROWTH PARAMETERS OF SHOOT AND ROOT IN ROCA (ERUCA SATIVA) PLANT. Celal Bayar University Journal of Science 6 2 105–120.
IEEE S. Ç. Becerik and T. Aydemir, “STUDY OF THE CHANGE IN ANTIOXIDATIVE ENZYME ACTIVITIES, METAL ACCUMULATION, SOME PHYSIOLOGICAL AND GROWTH PARAMETERS OF SHOOT AND ROOT IN ROCA (ERUCA SATIVA) PLANT”, CBUJOS, vol. 6, no. 2, pp. 105–120, 2010.
ISNAD Becerik, Seda Çınar - Aydemir, Tülini. “STUDY OF THE CHANGE IN ANTIOXIDATIVE ENZYME ACTIVITIES, METAL ACCUMULATION, SOME PHYSIOLOGICAL AND GROWTH PARAMETERS OF SHOOT AND ROOT IN ROCA (ERUCA SATIVA) PLANT”. Celal Bayar University Journal of Science 6/2 (June 2010), 105-120.
JAMA Becerik SÇ, Aydemir T. STUDY OF THE CHANGE IN ANTIOXIDATIVE ENZYME ACTIVITIES, METAL ACCUMULATION, SOME PHYSIOLOGICAL AND GROWTH PARAMETERS OF SHOOT AND ROOT IN ROCA (ERUCA SATIVA) PLANT. CBUJOS. 2010;6:105–120.
MLA Becerik, Seda Çınar and Tülini Aydemir. “STUDY OF THE CHANGE IN ANTIOXIDATIVE ENZYME ACTIVITIES, METAL ACCUMULATION, SOME PHYSIOLOGICAL AND GROWTH PARAMETERS OF SHOOT AND ROOT IN ROCA (ERUCA SATIVA) PLANT”. Celal Bayar University Journal of Science, vol. 6, no. 2, 2010, pp. 105-20.
Vancouver Becerik SÇ, Aydemir T. STUDY OF THE CHANGE IN ANTIOXIDATIVE ENZYME ACTIVITIES, METAL ACCUMULATION, SOME PHYSIOLOGICAL AND GROWTH PARAMETERS OF SHOOT AND ROOT IN ROCA (ERUCA SATIVA) PLANT. CBUJOS. 2010;6(2):105-20.