Research Article
BibTex RIS Cite
Year 2019, Volume: 15 Issue: 3, 241 - 250, 30.09.2019
https://doi.org/10.18466/cbayarfbe.449655

Abstract

References

  • 1. Dursun, M, Saygın, A. 2006. Bir asansör tahrik sistemi için bulanık mantık denetimli anahtarlamalı relüktans motor sürücüsüta sarımı. Journal of Engineering Sciences; 12, 151-160.
  • 2. Bolat, B. 2006/2. The Simulation and Optimization of Lift Control Systems with Genetic Algoritms. Journal of engineering and natural sciences.
  • 3. Erdem, E, Dallı, L. Asansörlerde Yağlamalarin Önemi, EMO Asansör Sepmpozyumu, 2008, Izmir, Turkey, pp 214-237.
  • 4. Yasunobu, S, Miyamoto, S, Ihara, H. 1983. Fuzzy Control for Automatic Train Operation System. IFAC Proceedings Volumes; 33-39.
  • 5. Suganthi, L, Iniyan, S, Anand, A.S. Applications of fuzzy logic in renewable energy systems. A review, Renewable and Sustainable Energy Reviews, 2015, pp 585-607.
  • 6. Koenig, H.E, Tokad, Y, Kesavan, H.K. Analysis of Discrete Physical Systems, McGraw-Hill Press: New York, USA, 1967.
  • 7. Roe, P. Networks and Systems; Addison-Wesley Press: Reading, MA, 1966.
  • 8. Andrews, G.C, Kesavan, H.K. The vector-network model: A new approach to vector dynamics, Mechanism and Machine Theory, 1975, pp 57-75.
  • 9. George B, Kesavan H.K. From particle-mass to multibody systems: graph-theoretic modeling, IEEE Trans. Systems, Man, and Cybernetics, 1997, pp 244-250.
  • 10. McPhee, J. Automatic Generation of Motion Equations for Planar Mechanical Systems Using the New Set of ‘Branch Coordinates’, Mech. Mach. Theory, 1998, pp 805–823.
  • 11. Y. Ercan, Mühendislik Sistemlerinin Modellenmesive Dinamiği; Literatür Yayınları: Istanbul, Turkey, 2009, pp 220-221.
  • 12. Liang, B, Zhu, D, Cai, Y. 2001. Dynamic Analysis of the Vehicle–Subgrade Model of A Vertical Coupled System. Journal of Sound and Vibration; 79-92.
  • 13. Wilson E. L, Farhoomand, I, Bathes, K.J. 1972. Nonlinear dynamic analysis of complex structures. Earthquake Engineering Structural Dynamics; 241-252.
  • 14. Muscolino, G, Ricciardi, G, Impollonia, N. 2000. Improved dynamic analysis of structures with mechanical uncertainties under deterministic input, Probabilistic Engineering Mechanics; 199-212.
  • 15. Derek, R, David N.W. System Dynamics – An Introduction; Prentice Hall Upper Saddle River Press: New Jersey, USA, 1997.
  • 16. Imrak, C.E. Gerdemli I. Asansörler ve Yürüyen Merdivenler; Birsen Yayınevi: Istanbul, Turkey, 2000.
  • 17. Rüdinger, F. 2007. Tuned mass damper with nonlinear viscous damping. Journal of Sound and Vibration; 932-948.
  • 18. Terenzi, G. 1999. Dynamics of SDOF systems with nonlinear viscous damping. Journal of Engineering Mechanics; 956–963.
  • 19. Zadeh, L.A. Fuzzy sets, Information and Control, 1965, pp 338-353.
  • 20. Cheung, J.Y.M, Kamal, A.S. Fuzzy Logic Control of refrigerant flow, UKACC International Conference on Control, 1996, pp 2-5.

Mathematical Modelling of Electrically Driven Elevator via Linear Graph Method, Dynamic Response Analysis and Active Vibration Control

Year 2019, Volume: 15 Issue: 3, 241 - 250, 30.09.2019
https://doi.org/10.18466/cbayarfbe.449655

Abstract

Viscous friction
occurs between the roller guide shoes and guide rail because of the grease
layer.This friction causes to vibration on the cage. This study’s aim is an
investigation and active control of that vibration for passengers. Initially,
the passenger elevator’s dynamics modeling is carried out by Linear Graph
Method. The DC motor and AC motor parameters are used in the system modeling
separately. Then, vibrations occurred on the elevator cabin are observed.
Finally, the effect of vibrations is reduced with the aid of an active
controller. The time and frequency responses are compared for two kinds of the
motor.

References

  • 1. Dursun, M, Saygın, A. 2006. Bir asansör tahrik sistemi için bulanık mantık denetimli anahtarlamalı relüktans motor sürücüsüta sarımı. Journal of Engineering Sciences; 12, 151-160.
  • 2. Bolat, B. 2006/2. The Simulation and Optimization of Lift Control Systems with Genetic Algoritms. Journal of engineering and natural sciences.
  • 3. Erdem, E, Dallı, L. Asansörlerde Yağlamalarin Önemi, EMO Asansör Sepmpozyumu, 2008, Izmir, Turkey, pp 214-237.
  • 4. Yasunobu, S, Miyamoto, S, Ihara, H. 1983. Fuzzy Control for Automatic Train Operation System. IFAC Proceedings Volumes; 33-39.
  • 5. Suganthi, L, Iniyan, S, Anand, A.S. Applications of fuzzy logic in renewable energy systems. A review, Renewable and Sustainable Energy Reviews, 2015, pp 585-607.
  • 6. Koenig, H.E, Tokad, Y, Kesavan, H.K. Analysis of Discrete Physical Systems, McGraw-Hill Press: New York, USA, 1967.
  • 7. Roe, P. Networks and Systems; Addison-Wesley Press: Reading, MA, 1966.
  • 8. Andrews, G.C, Kesavan, H.K. The vector-network model: A new approach to vector dynamics, Mechanism and Machine Theory, 1975, pp 57-75.
  • 9. George B, Kesavan H.K. From particle-mass to multibody systems: graph-theoretic modeling, IEEE Trans. Systems, Man, and Cybernetics, 1997, pp 244-250.
  • 10. McPhee, J. Automatic Generation of Motion Equations for Planar Mechanical Systems Using the New Set of ‘Branch Coordinates’, Mech. Mach. Theory, 1998, pp 805–823.
  • 11. Y. Ercan, Mühendislik Sistemlerinin Modellenmesive Dinamiği; Literatür Yayınları: Istanbul, Turkey, 2009, pp 220-221.
  • 12. Liang, B, Zhu, D, Cai, Y. 2001. Dynamic Analysis of the Vehicle–Subgrade Model of A Vertical Coupled System. Journal of Sound and Vibration; 79-92.
  • 13. Wilson E. L, Farhoomand, I, Bathes, K.J. 1972. Nonlinear dynamic analysis of complex structures. Earthquake Engineering Structural Dynamics; 241-252.
  • 14. Muscolino, G, Ricciardi, G, Impollonia, N. 2000. Improved dynamic analysis of structures with mechanical uncertainties under deterministic input, Probabilistic Engineering Mechanics; 199-212.
  • 15. Derek, R, David N.W. System Dynamics – An Introduction; Prentice Hall Upper Saddle River Press: New Jersey, USA, 1997.
  • 16. Imrak, C.E. Gerdemli I. Asansörler ve Yürüyen Merdivenler; Birsen Yayınevi: Istanbul, Turkey, 2000.
  • 17. Rüdinger, F. 2007. Tuned mass damper with nonlinear viscous damping. Journal of Sound and Vibration; 932-948.
  • 18. Terenzi, G. 1999. Dynamics of SDOF systems with nonlinear viscous damping. Journal of Engineering Mechanics; 956–963.
  • 19. Zadeh, L.A. Fuzzy sets, Information and Control, 1965, pp 338-353.
  • 20. Cheung, J.Y.M, Kamal, A.S. Fuzzy Logic Control of refrigerant flow, UKACC International Conference on Control, 1996, pp 2-5.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mustafa Oğuz Nalbant

Semih Sezer

Publication Date September 30, 2019
Published in Issue Year 2019 Volume: 15 Issue: 3

Cite

APA Nalbant, M. O., & Sezer, S. (2019). Mathematical Modelling of Electrically Driven Elevator via Linear Graph Method, Dynamic Response Analysis and Active Vibration Control. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15(3), 241-250. https://doi.org/10.18466/cbayarfbe.449655
AMA Nalbant MO, Sezer S. Mathematical Modelling of Electrically Driven Elevator via Linear Graph Method, Dynamic Response Analysis and Active Vibration Control. CBUJOS. September 2019;15(3):241-250. doi:10.18466/cbayarfbe.449655
Chicago Nalbant, Mustafa Oğuz, and Semih Sezer. “Mathematical Modelling of Electrically Driven Elevator via Linear Graph Method, Dynamic Response Analysis and Active Vibration Control”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15, no. 3 (September 2019): 241-50. https://doi.org/10.18466/cbayarfbe.449655.
EndNote Nalbant MO, Sezer S (September 1, 2019) Mathematical Modelling of Electrically Driven Elevator via Linear Graph Method, Dynamic Response Analysis and Active Vibration Control. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15 3 241–250.
IEEE M. O. Nalbant and S. Sezer, “Mathematical Modelling of Electrically Driven Elevator via Linear Graph Method, Dynamic Response Analysis and Active Vibration Control”, CBUJOS, vol. 15, no. 3, pp. 241–250, 2019, doi: 10.18466/cbayarfbe.449655.
ISNAD Nalbant, Mustafa Oğuz - Sezer, Semih. “Mathematical Modelling of Electrically Driven Elevator via Linear Graph Method, Dynamic Response Analysis and Active Vibration Control”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15/3 (September 2019), 241-250. https://doi.org/10.18466/cbayarfbe.449655.
JAMA Nalbant MO, Sezer S. Mathematical Modelling of Electrically Driven Elevator via Linear Graph Method, Dynamic Response Analysis and Active Vibration Control. CBUJOS. 2019;15:241–250.
MLA Nalbant, Mustafa Oğuz and Semih Sezer. “Mathematical Modelling of Electrically Driven Elevator via Linear Graph Method, Dynamic Response Analysis and Active Vibration Control”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 15, no. 3, 2019, pp. 241-50, doi:10.18466/cbayarfbe.449655.
Vancouver Nalbant MO, Sezer S. Mathematical Modelling of Electrically Driven Elevator via Linear Graph Method, Dynamic Response Analysis and Active Vibration Control. CBUJOS. 2019;15(3):241-50.