Research Article
BibTex RIS Cite

Investigation of the effect of Chip Slenderness Ratio and Cutting Tool Approach Angle on Vibration Amplitudes and Chip Morphology

Year 2019, Volume: 15 Issue: 4, 423 - 431, 30.12.2019
https://doi.org/10.18466/cbayarfbe.629157

Abstract

Machinability, especially turning process, is a
significant manufacturing method, but the vibrations, arisen from the natural
mechanism of the process, make difficulties. Unnumbered parameters influence
the process outcomes such as surface roughness, chip morphology, and vibration
amplitudes. In the present paper, the effect of tool approach angle and chip
slenderness ratio (CSR) on the vibration amplitudes, StDev in vibrations, and
chip morphology were investigated. For this purpose, 15o, 30o,
and 45o approach angles, 1, 3, 5, 10, and 15 CSR also depending on
CSR values 0,1 mm/rev, 0,15 mm/rev, 0,45 mm/rev, and 0,5 mm/rev feed rates, 0,5
mm, 1 mm, 1,5 mm, and 2,25 mm cutting depths were selected. It was investigated
that according to both vibration amplitudes and chip morphology criterion, the
most appropriate cutting tool approach angle was 30o, and CSR values
were 10 and 15. Besides, as the tool approach angle progress, the vibration
amplitudes in the X (cutting depth) direction were deteriorated, but at small
CSR values, they were increased. The optimum feed rates were to be 0,1 mm/rev
and 0,15 mm/rev, but the influence of the cutting depth showed differences
depending on the values of the selected feed rates. Surface quality was
improved at 30o and 45o approach angles, 0,1mm/rev and
0,15 mm/rev feed rates and10 and 15 CSR values. The chips in lamellas form,
without severe deformation cracks and serration formation were observed at 30o
approach angle, 0,1 mm/rev and 0,15 mm/rev feed rates also at 10 and 15 CSR
values.

References

  • [1] Kronenberg, M, Machining science and application theory and practice for operation and development of machining processes, 1sth edn. Arrowsmit Ltd. UK, 1996; pp 170-182.
  • [2] Cui, X, Guo, J. 2017. Effects of cutting parameters on tool temperatures in intermittent turning with the formation of serrated chip considered. Applied Thermal Engineering; 110: 1220-1229. http://dx.doi.org/10.1016/j.applthermaleng.2016.09.048.
  • [3] Duan, C, Dou, T, Wang M. 2009. Experimental Research of chip formation mechanism during high speed machining of hardened steel. International Journal of Advanced Engineering Applications (IJAEA); 2(3): 17-21.
  • [4] Liu, H. Z, Wang, S. J, Zong, W. J. 2019. Tool rake angle selection in micro-machining of 45 vol.%SiCp/2004Al based on its brittle-plastic properties. Journal of Manufacturing Processes; 37: 556-562. Doi:10.1016/j.jmapro.2018.12.030.
  • [5] Dahlman, P, Gunnberg, F, Jacobson, M. 2004. The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. Journal of Materials Technology; 147: 81-184. Doi: 10.1016/j.matprotec.2013.12.014.
  • [6] Atlati, S, Haddag, B, Nouari, M, Zenasni, M. 2011. Analysis of a new segmentation intensity ratio “SIR” to characterize the chip segmentation process in machining ductile metals. International Journal of Machine Tools & Manufacture; 51: 687-700. Doi: 10.1016/j.ijmachtools.2011.05.007.
  • [7] Liu, R, Eaton, E, Yu, M, Kuang, J. 2017. An investigation of side flow during chip formation in orthogonal cutting. Procedia Manufacturing; 10: 568-577. Doi:10.1016/j.promfg.2017.07.053.
  • [8] Sun, Z, Shuang, F, Ma, W. 2018. Investigations of vibration cutting mechanisms of Ti6Al4V alloy. International Journal of Mechanical Sciences; 48: 510-530. Doi:10.1016/j.ijmecsci.2018.09.006.
  • [9] Su, G, Liu, Z, Li, L, Wang, B. 2015. Influences of chip serration on micro-topography of machined surface in high-speed cutting. International Journal of Machine Tools & Manufacture; 89: 202-207. Doi:10.1016/j.ijmactools.2014.10.012.
  • [10] Ducobi, F, Lorphevre, E. R, Filippi, E. 2016. Materials constitutive model and chip separation criterion influence on the modeling of Ti6Al4V machining with experimental validation in strictly orthogonal cutting condition. International Journal of Mechanical Sciences; 107: 136-149. Doi:10.1016/j.ijmecsci.2016.01.008.
  • [11] Ahearne, E, Baron, S. 2017. Fundamental mechanisms in orthogonal cutting of medical grade cobalt chromium alloy (ASTM F75). CIRP Journal of Manufacturing Science and Technology; 19: 1-6. Doi:10.1016/j.cirpj.2017.02.001.
  • 12] Astakhov, V. P, Shvets, S. 2003. The assessment of plastic deformation in metal cutting. Journal of Materials Processing Technology; 146: 193-202. Doi:10.1016/j.jmatprotec.2003.10.015.
  • [13] Zhang, S. J, To, S, Wang, S. J, Zhu, Z. W. A review of surface roughness generation in ultra-precision machining. International Journal of Machine Tools & Manufacture; 91: 76-95. Doi:10.1016/j.ijmactools.2015.02.001.
  • [14] Das, D, Sahoo, B. P, Bansal, S, Mishra, P. 2018. Experimental investigation on material removal rate and chip forms during T6 tempered Al 7075 alloy. Materials Today: Proceedings; 5 (2): 3250-3256. Doi:10.1016/j.matpr.2017.11.566.
  • [15] Munoa, J, Beudaert, X, Erkorkmaz, K, Iglesias, A. 2015. Barrios, A, Active suppression of structural chatter vibrations using machine drives and accelerometers. CIRP Annals-Manufacturing Technology; 64: 385-388. Doi:10.1016/j.cirp.2015.04.1016.
  • [16] Ramanaiah, B. V, Manikanta, B, Sankar, M. R, Malhotra, M, Gajrani, K. K. 2018. Experimental study of deflection and surface roughness in thin wall machining of aluminium alloy. Materials Today: Proceedings; 5 (2): 3745-3754. Doi:10.1016/j.matpr.2017.11.627
  • [17] Palacios, J. A, Olvera, D, Urbikain, G, Zuniga, A. E, Romero, O. M, Lacalle, L. N. L, Rodriguez. C, Alfaro, H. M. 2018. Combination of simulated annealing and pseudo spectral methods for the optimum removal rate in turning operations of nickel-based alloys. Advances in Engineering Software; 115: 391-397. Doi:10.1016/j.advangsoft.2017.10.008.
  • [18] Thamizhmanii, S, Hasan, S. 2012. Machinability study using chip thickness ratio on difficult to cut metals by CBN cutting tool. Key Engineering Materials; 504-506: 1317-1322. Doi:10.4028/www.scientific.net/KEÖ.504-506.1317.
  • [19] Silva, L. R, Abra, A. M, Faria, P, Davim, J. P. 2012. Machinability study of steels in precision orthogonal cutting. Materials Research; 15(4): 589-595. Doi:10.1590/S1516-14392012005000071.
  • [20] Bordin, A, Bruschi, S, Ghiotti, A. 2014. The effect of cutting speed and feed rate on the surface integrity in dry turning of CoCrMo alloy. Procedia CIRP; 13: 219-224. Doi: 10.1016/j.procir.2014.04.038.
  • [21] Nesluŝan, M, Ŝípek, M, Mrázik, J. 2012. Analysis of chip formation during hard turning through acoustic emission. Materials Engineering-Materiálové inžierstvo; 19: 1-11.
  • [22] Yan, L, Zhang, Q, Yu, J. 2018. Analytical models for oil penetration and experimental study on vibration assisted machining with minimum quantity lubrication. International Journal of Mechanical Sciences; 148: 374-382. Doi:10.1016/j.ijmecsci.2018.09.016.
Year 2019, Volume: 15 Issue: 4, 423 - 431, 30.12.2019
https://doi.org/10.18466/cbayarfbe.629157

Abstract

References

  • [1] Kronenberg, M, Machining science and application theory and practice for operation and development of machining processes, 1sth edn. Arrowsmit Ltd. UK, 1996; pp 170-182.
  • [2] Cui, X, Guo, J. 2017. Effects of cutting parameters on tool temperatures in intermittent turning with the formation of serrated chip considered. Applied Thermal Engineering; 110: 1220-1229. http://dx.doi.org/10.1016/j.applthermaleng.2016.09.048.
  • [3] Duan, C, Dou, T, Wang M. 2009. Experimental Research of chip formation mechanism during high speed machining of hardened steel. International Journal of Advanced Engineering Applications (IJAEA); 2(3): 17-21.
  • [4] Liu, H. Z, Wang, S. J, Zong, W. J. 2019. Tool rake angle selection in micro-machining of 45 vol.%SiCp/2004Al based on its brittle-plastic properties. Journal of Manufacturing Processes; 37: 556-562. Doi:10.1016/j.jmapro.2018.12.030.
  • [5] Dahlman, P, Gunnberg, F, Jacobson, M. 2004. The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. Journal of Materials Technology; 147: 81-184. Doi: 10.1016/j.matprotec.2013.12.014.
  • [6] Atlati, S, Haddag, B, Nouari, M, Zenasni, M. 2011. Analysis of a new segmentation intensity ratio “SIR” to characterize the chip segmentation process in machining ductile metals. International Journal of Machine Tools & Manufacture; 51: 687-700. Doi: 10.1016/j.ijmachtools.2011.05.007.
  • [7] Liu, R, Eaton, E, Yu, M, Kuang, J. 2017. An investigation of side flow during chip formation in orthogonal cutting. Procedia Manufacturing; 10: 568-577. Doi:10.1016/j.promfg.2017.07.053.
  • [8] Sun, Z, Shuang, F, Ma, W. 2018. Investigations of vibration cutting mechanisms of Ti6Al4V alloy. International Journal of Mechanical Sciences; 48: 510-530. Doi:10.1016/j.ijmecsci.2018.09.006.
  • [9] Su, G, Liu, Z, Li, L, Wang, B. 2015. Influences of chip serration on micro-topography of machined surface in high-speed cutting. International Journal of Machine Tools & Manufacture; 89: 202-207. Doi:10.1016/j.ijmactools.2014.10.012.
  • [10] Ducobi, F, Lorphevre, E. R, Filippi, E. 2016. Materials constitutive model and chip separation criterion influence on the modeling of Ti6Al4V machining with experimental validation in strictly orthogonal cutting condition. International Journal of Mechanical Sciences; 107: 136-149. Doi:10.1016/j.ijmecsci.2016.01.008.
  • [11] Ahearne, E, Baron, S. 2017. Fundamental mechanisms in orthogonal cutting of medical grade cobalt chromium alloy (ASTM F75). CIRP Journal of Manufacturing Science and Technology; 19: 1-6. Doi:10.1016/j.cirpj.2017.02.001.
  • 12] Astakhov, V. P, Shvets, S. 2003. The assessment of plastic deformation in metal cutting. Journal of Materials Processing Technology; 146: 193-202. Doi:10.1016/j.jmatprotec.2003.10.015.
  • [13] Zhang, S. J, To, S, Wang, S. J, Zhu, Z. W. A review of surface roughness generation in ultra-precision machining. International Journal of Machine Tools & Manufacture; 91: 76-95. Doi:10.1016/j.ijmactools.2015.02.001.
  • [14] Das, D, Sahoo, B. P, Bansal, S, Mishra, P. 2018. Experimental investigation on material removal rate and chip forms during T6 tempered Al 7075 alloy. Materials Today: Proceedings; 5 (2): 3250-3256. Doi:10.1016/j.matpr.2017.11.566.
  • [15] Munoa, J, Beudaert, X, Erkorkmaz, K, Iglesias, A. 2015. Barrios, A, Active suppression of structural chatter vibrations using machine drives and accelerometers. CIRP Annals-Manufacturing Technology; 64: 385-388. Doi:10.1016/j.cirp.2015.04.1016.
  • [16] Ramanaiah, B. V, Manikanta, B, Sankar, M. R, Malhotra, M, Gajrani, K. K. 2018. Experimental study of deflection and surface roughness in thin wall machining of aluminium alloy. Materials Today: Proceedings; 5 (2): 3745-3754. Doi:10.1016/j.matpr.2017.11.627
  • [17] Palacios, J. A, Olvera, D, Urbikain, G, Zuniga, A. E, Romero, O. M, Lacalle, L. N. L, Rodriguez. C, Alfaro, H. M. 2018. Combination of simulated annealing and pseudo spectral methods for the optimum removal rate in turning operations of nickel-based alloys. Advances in Engineering Software; 115: 391-397. Doi:10.1016/j.advangsoft.2017.10.008.
  • [18] Thamizhmanii, S, Hasan, S. 2012. Machinability study using chip thickness ratio on difficult to cut metals by CBN cutting tool. Key Engineering Materials; 504-506: 1317-1322. Doi:10.4028/www.scientific.net/KEÖ.504-506.1317.
  • [19] Silva, L. R, Abra, A. M, Faria, P, Davim, J. P. 2012. Machinability study of steels in precision orthogonal cutting. Materials Research; 15(4): 589-595. Doi:10.1590/S1516-14392012005000071.
  • [20] Bordin, A, Bruschi, S, Ghiotti, A. 2014. The effect of cutting speed and feed rate on the surface integrity in dry turning of CoCrMo alloy. Procedia CIRP; 13: 219-224. Doi: 10.1016/j.procir.2014.04.038.
  • [21] Nesluŝan, M, Ŝípek, M, Mrázik, J. 2012. Analysis of chip formation during hard turning through acoustic emission. Materials Engineering-Materiálové inžierstvo; 19: 1-11.
  • [22] Yan, L, Zhang, Q, Yu, J. 2018. Analytical models for oil penetration and experimental study on vibration assisted machining with minimum quantity lubrication. International Journal of Mechanical Sciences; 148: 374-382. Doi:10.1016/j.ijmecsci.2018.09.016.
There are 22 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Zülküf Demir 0000-0002-0685-3712

Oktay Adıyaman 0000-0002-2674-3836

Publication Date December 30, 2019
Published in Issue Year 2019 Volume: 15 Issue: 4

Cite

APA Demir, Z., & Adıyaman, O. (2019). Investigation of the effect of Chip Slenderness Ratio and Cutting Tool Approach Angle on Vibration Amplitudes and Chip Morphology. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15(4), 423-431. https://doi.org/10.18466/cbayarfbe.629157
AMA Demir Z, Adıyaman O. Investigation of the effect of Chip Slenderness Ratio and Cutting Tool Approach Angle on Vibration Amplitudes and Chip Morphology. CBUJOS. December 2019;15(4):423-431. doi:10.18466/cbayarfbe.629157
Chicago Demir, Zülküf, and Oktay Adıyaman. “Investigation of the Effect of Chip Slenderness Ratio and Cutting Tool Approach Angle on Vibration Amplitudes and Chip Morphology”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15, no. 4 (December 2019): 423-31. https://doi.org/10.18466/cbayarfbe.629157.
EndNote Demir Z, Adıyaman O (December 1, 2019) Investigation of the effect of Chip Slenderness Ratio and Cutting Tool Approach Angle on Vibration Amplitudes and Chip Morphology. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15 4 423–431.
IEEE Z. Demir and O. Adıyaman, “Investigation of the effect of Chip Slenderness Ratio and Cutting Tool Approach Angle on Vibration Amplitudes and Chip Morphology”, CBUJOS, vol. 15, no. 4, pp. 423–431, 2019, doi: 10.18466/cbayarfbe.629157.
ISNAD Demir, Zülküf - Adıyaman, Oktay. “Investigation of the Effect of Chip Slenderness Ratio and Cutting Tool Approach Angle on Vibration Amplitudes and Chip Morphology”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15/4 (December 2019), 423-431. https://doi.org/10.18466/cbayarfbe.629157.
JAMA Demir Z, Adıyaman O. Investigation of the effect of Chip Slenderness Ratio and Cutting Tool Approach Angle on Vibration Amplitudes and Chip Morphology. CBUJOS. 2019;15:423–431.
MLA Demir, Zülküf and Oktay Adıyaman. “Investigation of the Effect of Chip Slenderness Ratio and Cutting Tool Approach Angle on Vibration Amplitudes and Chip Morphology”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 15, no. 4, 2019, pp. 423-31, doi:10.18466/cbayarfbe.629157.
Vancouver Demir Z, Adıyaman O. Investigation of the effect of Chip Slenderness Ratio and Cutting Tool Approach Angle on Vibration Amplitudes and Chip Morphology. CBUJOS. 2019;15(4):423-31.