Liquefaction Potential Analysis and Mapping of Alluvium Soil: A Case Study in Nazilli-Aydın (West Turkey)
Year 2020,
Volume: 16 Issue: 1, 15 - 23, 27.03.2020
Hayrullah Yürekli
Öznur Karaca
Abstract
The importance of urban planning for sustainable
cities is indispensable. For this, the preparation of geotechnical maps,
especially, comes to the agenda. Liquefaction susceptibility mapping is
important for towns located in first-degree earthquake regions. This study
investigated the susceptibility to liquefaction in a possible earthquake in
Nazilli (Aydın) county in light of geologic and geotechnical studies. In line
with this, firstly drilling was completed at 110 points, with experiments
performed on location and geotechnical properties determined in soil samples
taken during this process. Generally, the county is founded on alluvial soils
with groundwater very close to the surface. This situation makes it important
to determine the liquefaction status of the town during a possible earthquake.
The liquefaction potential (FL) of the study area was determined with the
simplified SPT based method and additionally the liquefaction potential index
(LI) was calculated. Using this data and an ArcGIS program, the FL and LI maps
of the study area were prepared. According to the results obtained, the
majority of the study area has very high liquefaction potential index.
Supporting Institution
Çanakkale Onsekiz Mart Üniversitesi
Project Number
BAP, 2010/165
Thanks
This study was produced from a master thesis with the title ‘Paleoflood Analysis in Saricay (Çanakkale) and Flood Areas with Geographic Information Systems (GIS)’, and it was supported by Çanakkale Onsekiz Mart University Scientific Research Coordination Unit with project no. 2010/165.
References
- 1. Seed, HB, Idriss IM. 1971. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division ASCE, 107(SM9) 1249-1274.
- 2. Seed, HB, Idriss, IM. Ground motions and soil liquefaction during earthquakes. Earthquake Engineering Research Institute, Berkeley, CA, 1982; pp 134.
- 3. Iwasaki, T, Tokida, K, Tatsuoka, F, Watanabe, S, Yasuda, S, Sato, H. Microzonation for soil liquefaction potential using simplified methods. In: Proceedings of the 3rd International Conference on Microzonation, Seattle 3, 1982, pp 1319-1330.
- 4. Seed, HB, Tokimatsu, K, Harder, LF, Chung, RM. 1985. Influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Eng, 111(12), 1425-1445.
- 5. Robertson, PK, Wride, CE. 1998. Evaluating cyclic liquefaction potential using the cone penetration test. Can Geotech J, 35(3):442–459.
- 6. Ulusay, R, Aydan, O, Kumsar, H, Sonmez, H. 2000. Engineering geological characteristics of the 1998 Adana-Ceyhan earthquake, with particular emphasis on liquefaction phenomena and the role of soil behaviour. Bull Eng Geol Env, 59:99-118.
- 7. Youd, TL, Idriss, IM. 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 4, April, 2001.
- 8. Youd, TL, Idriss, IM, Andrus, RD, Arango, I, Castro, G, Christian, JT, Dobry, R, Finn, WDL, Harder, LF, Hynes, ME, Ishihara, K, Koester, JP, Liao, SSC, Marcuson, III WF, Martin, GR, Mitchell, JK, Moriwaki, Y, Power, MS, Robertson PK, Seed, RB, Stokoe, II KH. 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech and Geoenviron Eng, 817–833.
- 9. Seed, RB, Cetin, KO, Moss, RES, Kammerer, AM, Wu, J, Pestana, JM, Riemer, MF, Sancio, RB, Bray, JD, Kayen, RE, Faris, A. 2003. Recent advances in soil liquefaction engineering: a unified and consistent framework. EERC Report No. 2003-06.
- 10. Cox, BR, Boulanger, RW, Tokimatsu, K, Wood, CM, Abe, A, Ashford S, Donahue J, Ishihara K, Kayen R, Katsumata K, Kishida, T, Kokusho, T, Mason, H.B, Moss, R, Stewart, JP, Tohyama, K, Zekkos, D. Liquefaction at strong motion stations and in Urayasu City during the 2011 Tohoku-Oki Earthquake. Earthquake Spectra, March 2013, Vol. 29, No. S1, pp S55-S80.
- 11. Korkmaz, KA, Çarhoğlu AI, Usta, P, Gedik, YH. 2013. Tokat Yağıbasan medrese yapısının deprem riskinin değerlendirilmesi. C.B.U. Journal of Science, 8(2): 43 –51.
- 12. Gürbüz, A, Tekin, M. 2015. Performans sıralaması yöntemiyle mevcut binaların bölgesel deprem risk dağılımının belirlenmesi. C.B.U. Journal of Science, 11(1): 37-48.
- 13. Yilmaz, I, Bagci, A. 2006. Soil liquefaction susceptibility and hazard mapping in the residential area of Kütahya (Turkey). Environ Geol, 49:708–719.
- 14. Uyanık O. 2006. An Aproach for cyclic stress ratio of liquefied or unliquefied soils. DEU Faculty of Engineering, Journal of Science and Engineering, 8(2), 79-91.
- 15. Uyanık O and Taktak AG. 2009. A new method for liquefaction analysis from shear wave velocity and predominant resonanceperiod. Süleyman Demirel University, Journal of Science and Engineering, 13(1),74-81.
- 16. Uyanık, O, Ekinci, B, Uyanık, A. 2013. Liquefaction analysis from seismic velocities and determination of lagoon limits Kumluca/Antalya example. Journal of Applied Geophysics, 95, 90–103.
- 17. Tunusluoglu, MC, Karaca, O. 2018. Liquefaction severity mapping based on SPT data: a case study in Canakkale city (NW Turkey). Environmental Earth Sciences, 77:422.
- 18. Tokimatsu, K, Yoshimi, Y. 1983. Empirical correlation of soil liquefaction based on SPT-N Value and Fines Content. Soil and Foundations, 23: (4), 56-74.
- 20. Seed, HB, De, Alba P. Use of SPT and CPT tests for evaluating the liquefaction resistance of soils. Proceedings of the specialty conference on the use of in situ tests ingeotechnical engineering ASCE, Blacksburg Virginia, 1986, Special Publication No. 6.
- 21. Seed. HB, Harder, LF. SPT-Based analysis of cyclic pressure generation and undrained residual strength. Proceedings of H. Bolton Seed Memorial Symposium, BiTech Publishers Ltd., 1990, 351–376.
- 22. Liao, SSC, Whitman, RV. 1986. Overburden correction factors for SPT in sand. J Geotech Eng Div ASCE, 112(3):373–377.
- 23. Tosun, H, Ulusay, R. 1997. Engineering geological characterization and evaluation of liquefaction susceptibility of foundation soils at a dam site, southwest Turkey. Environ Eng Geosci, 3(3):389–409.
- 24. Ulusay, R, Kuru, T. 2004. 1998 Adana-Ceyhan (Turkey) earthquake and a preliminary microzonation based on liquefaction potential for Ceyhan town. Nat Hazards, 32:59–88.
- 25. Duman, ES, İkizler, SB. 2014. Assessment of liquefaction potential of Erzincan Province and its vicinity, Turkey. Nat Hazards, 73:1863–1887.
- 26. Sonmez, H. 2003. Modification of the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area (Inegol, Turkey). Environ. Geol., 44 (7), 862–871.
- 27. Ercan, T, Dinçel, A, Metin, M, Türkecan, A, Güney, E. 1978. Geology of Neogene basins in Uşak region. Geological Society of Turkey Bulletin, 21, 97–106 (in Turkish with English abstract).
- 28. Sözbilir, H, Emre, T. 1990. Neogene stratigraphy and structure of the northern rim of the Büyük Menderes Graben. International Earth Sciences Congress on Aegean Regions, Proceedings, II, 314–322.
- 29. Yavuz, MA. 2010. Aydın İli, Nazilli ilçesi yerleşim alanının uygulama imar planına esas jeolojik-jeoteknik etüt raporu. Erdem Yerbilimleri. Fethiye.
- 30. Demirtaş R. and Yılmaz R., 1996. Türkiye’nin sismotektoniği. T.C. Bayındırlık ve İskân Bakanlığı, Ankara, 91.
- 31. Şaroğlu F., Emre Ö. and Boray A., 1987. Turkey's active faults and seismicity. MTA Report No: 8174.
- 32. Altunel E., 1999. Geological and geomorphological observations in relation to the 20 September 1999 Menderes Earthquake, Western Turkey. Journal of the Geological Society, 156: 241-246.
- 33. Utku, M, Sözbilir, H. 2003. Aydın-Nazilli fayının paleosismolojik ön bulguları, Türkiye Kuvaterneri Çalıştayı-IV, Bildiriler Kitapçığı, Makaleler, s. 120-128, 29-30 Mayıs 2003, İstanbul.
- 34. Ergin, K, Güçlü U, Uz Z. 1967. Türkiye ve civarının deprem kataloğu (Milattan sonra 11 yılından 1964 sonuna kadar). İstanbul Teknik Üniversitesi Maden Fakültesi, Arz Fiziği Enstitüsü Yayınları, No:24.
- 35. İlhan, E. 1971. Earthquakes in Turkey. In: Campbell, A.S.(ed.) Geology and History of Turkey. Petroleum Exploration Society of Libya, 431-442.
- 36. Sipahioğlu, S. 1979. Büyük Menderes alçalımı ile Menderes Masifi yükseliminin sınırını oluşturan kuşağa uygulanan bir deprem öncesi çalışma. Deprem Araştırma Enstitüsü Bülteni; 25, 5-27.
- 37. Ambraseys, NN, Finkel, CF. 1987. Seismicity of Turkey and neighbouring regions, 1899-1915. Annales Geophysicae; 5B, 701-726.
- 38. KOERI, http://www.koeri.boun.edu.tr/sismo/Depremler/thistoric.htm (accessed at 10.07.2019).
- 39. Eyidoğan, H, Utku, Z, Güçlü, U, Değirmenci, E. Türkiye büyük depremleri makro sismik rehberi (1900-1988). İTÜ. Maden Fak., Jeofizik Müh. Bölümü Yayınları, İstanbul, 1991; pp 198.
- 40. Ocakoğlu, F, Açıkalın, S, Güneş, G, Özkes, S, Dirik, K, Özsayın, E. 2013. Was the 1899 Menderes Valley Earthquake a double earthquake? Historical and paleosismological constraints. Journal of Asian Earth Sciences; 67–68, 187–198.
- 41. Koçyiğit, A. 2015. An overview on the main stratigraphic and structural features of a geothermal area: the case of NazilliBuharkent section of the Büyük Menderes Graben, SW Turkey, Geodinamica Acta; 27:2-3, 85-109.
- 42. Paton, S. 1992. Active normal faulting, drainage patterns and sedimentation in southwestern Turkey. Journal of the Geological Society, London;
- 43. Hakyemez, YH, Erkal, T, Göktaş, F. 1999. Late Quaternaryevolution of the Gediz and Büyük Menderes grabens, Western Anatolia, Turkey. Quaternary Science Reviews; 18, 549-554.
- 44. Atar, Z. 2013. The 1899 Earthquake of Aydın-Denizli with photos. Journal of Modern Turkish History Studies; XIII/27 (2013- Autumn), 5-32.
Year 2020,
Volume: 16 Issue: 1, 15 - 23, 27.03.2020
Hayrullah Yürekli
Öznur Karaca
Project Number
BAP, 2010/165
References
- 1. Seed, HB, Idriss IM. 1971. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division ASCE, 107(SM9) 1249-1274.
- 2. Seed, HB, Idriss, IM. Ground motions and soil liquefaction during earthquakes. Earthquake Engineering Research Institute, Berkeley, CA, 1982; pp 134.
- 3. Iwasaki, T, Tokida, K, Tatsuoka, F, Watanabe, S, Yasuda, S, Sato, H. Microzonation for soil liquefaction potential using simplified methods. In: Proceedings of the 3rd International Conference on Microzonation, Seattle 3, 1982, pp 1319-1330.
- 4. Seed, HB, Tokimatsu, K, Harder, LF, Chung, RM. 1985. Influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Eng, 111(12), 1425-1445.
- 5. Robertson, PK, Wride, CE. 1998. Evaluating cyclic liquefaction potential using the cone penetration test. Can Geotech J, 35(3):442–459.
- 6. Ulusay, R, Aydan, O, Kumsar, H, Sonmez, H. 2000. Engineering geological characteristics of the 1998 Adana-Ceyhan earthquake, with particular emphasis on liquefaction phenomena and the role of soil behaviour. Bull Eng Geol Env, 59:99-118.
- 7. Youd, TL, Idriss, IM. 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 4, April, 2001.
- 8. Youd, TL, Idriss, IM, Andrus, RD, Arango, I, Castro, G, Christian, JT, Dobry, R, Finn, WDL, Harder, LF, Hynes, ME, Ishihara, K, Koester, JP, Liao, SSC, Marcuson, III WF, Martin, GR, Mitchell, JK, Moriwaki, Y, Power, MS, Robertson PK, Seed, RB, Stokoe, II KH. 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech and Geoenviron Eng, 817–833.
- 9. Seed, RB, Cetin, KO, Moss, RES, Kammerer, AM, Wu, J, Pestana, JM, Riemer, MF, Sancio, RB, Bray, JD, Kayen, RE, Faris, A. 2003. Recent advances in soil liquefaction engineering: a unified and consistent framework. EERC Report No. 2003-06.
- 10. Cox, BR, Boulanger, RW, Tokimatsu, K, Wood, CM, Abe, A, Ashford S, Donahue J, Ishihara K, Kayen R, Katsumata K, Kishida, T, Kokusho, T, Mason, H.B, Moss, R, Stewart, JP, Tohyama, K, Zekkos, D. Liquefaction at strong motion stations and in Urayasu City during the 2011 Tohoku-Oki Earthquake. Earthquake Spectra, March 2013, Vol. 29, No. S1, pp S55-S80.
- 11. Korkmaz, KA, Çarhoğlu AI, Usta, P, Gedik, YH. 2013. Tokat Yağıbasan medrese yapısının deprem riskinin değerlendirilmesi. C.B.U. Journal of Science, 8(2): 43 –51.
- 12. Gürbüz, A, Tekin, M. 2015. Performans sıralaması yöntemiyle mevcut binaların bölgesel deprem risk dağılımının belirlenmesi. C.B.U. Journal of Science, 11(1): 37-48.
- 13. Yilmaz, I, Bagci, A. 2006. Soil liquefaction susceptibility and hazard mapping in the residential area of Kütahya (Turkey). Environ Geol, 49:708–719.
- 14. Uyanık O. 2006. An Aproach for cyclic stress ratio of liquefied or unliquefied soils. DEU Faculty of Engineering, Journal of Science and Engineering, 8(2), 79-91.
- 15. Uyanık O and Taktak AG. 2009. A new method for liquefaction analysis from shear wave velocity and predominant resonanceperiod. Süleyman Demirel University, Journal of Science and Engineering, 13(1),74-81.
- 16. Uyanık, O, Ekinci, B, Uyanık, A. 2013. Liquefaction analysis from seismic velocities and determination of lagoon limits Kumluca/Antalya example. Journal of Applied Geophysics, 95, 90–103.
- 17. Tunusluoglu, MC, Karaca, O. 2018. Liquefaction severity mapping based on SPT data: a case study in Canakkale city (NW Turkey). Environmental Earth Sciences, 77:422.
- 18. Tokimatsu, K, Yoshimi, Y. 1983. Empirical correlation of soil liquefaction based on SPT-N Value and Fines Content. Soil and Foundations, 23: (4), 56-74.
- 20. Seed, HB, De, Alba P. Use of SPT and CPT tests for evaluating the liquefaction resistance of soils. Proceedings of the specialty conference on the use of in situ tests ingeotechnical engineering ASCE, Blacksburg Virginia, 1986, Special Publication No. 6.
- 21. Seed. HB, Harder, LF. SPT-Based analysis of cyclic pressure generation and undrained residual strength. Proceedings of H. Bolton Seed Memorial Symposium, BiTech Publishers Ltd., 1990, 351–376.
- 22. Liao, SSC, Whitman, RV. 1986. Overburden correction factors for SPT in sand. J Geotech Eng Div ASCE, 112(3):373–377.
- 23. Tosun, H, Ulusay, R. 1997. Engineering geological characterization and evaluation of liquefaction susceptibility of foundation soils at a dam site, southwest Turkey. Environ Eng Geosci, 3(3):389–409.
- 24. Ulusay, R, Kuru, T. 2004. 1998 Adana-Ceyhan (Turkey) earthquake and a preliminary microzonation based on liquefaction potential for Ceyhan town. Nat Hazards, 32:59–88.
- 25. Duman, ES, İkizler, SB. 2014. Assessment of liquefaction potential of Erzincan Province and its vicinity, Turkey. Nat Hazards, 73:1863–1887.
- 26. Sonmez, H. 2003. Modification of the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area (Inegol, Turkey). Environ. Geol., 44 (7), 862–871.
- 27. Ercan, T, Dinçel, A, Metin, M, Türkecan, A, Güney, E. 1978. Geology of Neogene basins in Uşak region. Geological Society of Turkey Bulletin, 21, 97–106 (in Turkish with English abstract).
- 28. Sözbilir, H, Emre, T. 1990. Neogene stratigraphy and structure of the northern rim of the Büyük Menderes Graben. International Earth Sciences Congress on Aegean Regions, Proceedings, II, 314–322.
- 29. Yavuz, MA. 2010. Aydın İli, Nazilli ilçesi yerleşim alanının uygulama imar planına esas jeolojik-jeoteknik etüt raporu. Erdem Yerbilimleri. Fethiye.
- 30. Demirtaş R. and Yılmaz R., 1996. Türkiye’nin sismotektoniği. T.C. Bayındırlık ve İskân Bakanlığı, Ankara, 91.
- 31. Şaroğlu F., Emre Ö. and Boray A., 1987. Turkey's active faults and seismicity. MTA Report No: 8174.
- 32. Altunel E., 1999. Geological and geomorphological observations in relation to the 20 September 1999 Menderes Earthquake, Western Turkey. Journal of the Geological Society, 156: 241-246.
- 33. Utku, M, Sözbilir, H. 2003. Aydın-Nazilli fayının paleosismolojik ön bulguları, Türkiye Kuvaterneri Çalıştayı-IV, Bildiriler Kitapçığı, Makaleler, s. 120-128, 29-30 Mayıs 2003, İstanbul.
- 34. Ergin, K, Güçlü U, Uz Z. 1967. Türkiye ve civarının deprem kataloğu (Milattan sonra 11 yılından 1964 sonuna kadar). İstanbul Teknik Üniversitesi Maden Fakültesi, Arz Fiziği Enstitüsü Yayınları, No:24.
- 35. İlhan, E. 1971. Earthquakes in Turkey. In: Campbell, A.S.(ed.) Geology and History of Turkey. Petroleum Exploration Society of Libya, 431-442.
- 36. Sipahioğlu, S. 1979. Büyük Menderes alçalımı ile Menderes Masifi yükseliminin sınırını oluşturan kuşağa uygulanan bir deprem öncesi çalışma. Deprem Araştırma Enstitüsü Bülteni; 25, 5-27.
- 37. Ambraseys, NN, Finkel, CF. 1987. Seismicity of Turkey and neighbouring regions, 1899-1915. Annales Geophysicae; 5B, 701-726.
- 38. KOERI, http://www.koeri.boun.edu.tr/sismo/Depremler/thistoric.htm (accessed at 10.07.2019).
- 39. Eyidoğan, H, Utku, Z, Güçlü, U, Değirmenci, E. Türkiye büyük depremleri makro sismik rehberi (1900-1988). İTÜ. Maden Fak., Jeofizik Müh. Bölümü Yayınları, İstanbul, 1991; pp 198.
- 40. Ocakoğlu, F, Açıkalın, S, Güneş, G, Özkes, S, Dirik, K, Özsayın, E. 2013. Was the 1899 Menderes Valley Earthquake a double earthquake? Historical and paleosismological constraints. Journal of Asian Earth Sciences; 67–68, 187–198.
- 41. Koçyiğit, A. 2015. An overview on the main stratigraphic and structural features of a geothermal area: the case of NazilliBuharkent section of the Büyük Menderes Graben, SW Turkey, Geodinamica Acta; 27:2-3, 85-109.
- 42. Paton, S. 1992. Active normal faulting, drainage patterns and sedimentation in southwestern Turkey. Journal of the Geological Society, London;
- 43. Hakyemez, YH, Erkal, T, Göktaş, F. 1999. Late Quaternaryevolution of the Gediz and Büyük Menderes grabens, Western Anatolia, Turkey. Quaternary Science Reviews; 18, 549-554.
- 44. Atar, Z. 2013. The 1899 Earthquake of Aydın-Denizli with photos. Journal of Modern Turkish History Studies; XIII/27 (2013- Autumn), 5-32.