Research Article
BibTex RIS Cite
Year 2020, Volume: 16 Issue: 2, 183 - 190, 24.06.2020

Abstract

References

  • [1]. M. Demir et al., “Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin,” Industrial & Engineering Chemistry Research, vol. 54, no. 43, pp. 10731–10739, 2015.
  • [2]. S. Bilek, A. Y. Melikoğlu, and S. Cesur, “Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri ve Uygulama Alanları,” Akademik Gıda, vol. 17, no. 1, pp. 140–148.
  • [3]. N. KOLANKAYA and N. SAĞLAM, “Biyodelignifikasyon ve biyoteknolojik önemi,” Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, vol. 3, no. 3, 1988.
  • [4]. J. F. Kadla, S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compere, and W. Griffith, “Lignin-based carbon fibers for composite fiber applications,” Carbon, vol. 40, no. 15, pp. 2913–2920, 2002.
  • [5]. M. Zhang and A. A. Ogale, “Carbon fibers from dry-spinning of acetylated softwood kraft lignin,” Carbon, vol. 69, pp. 626–629, Apr. 2014, doi: 10.1016/j.carbon.2013.12.015.
  • [6]. K. Sudo, K. Shimizu, N. Nakashima, and A. Yokoyama, “A new modification method of exploded lignin for the preparation of a carbon fiber precursor,” Journal of Applied Polymer Science, vol. 48, no. 8, pp. 1485–1491, 1993, doi: 10.1002/app.1993.070480817.
  • [7]. H. Mainka et al., “Lignin – an alternative precursor for sustainable and cost-effective automotive carbon fiber,” Journal of Materials Research and Technology, vol. 4, no. 3, pp. 283–296, Jul. 2015, doi: 10.1016/j.jmrt.2015.03.004.
  • [8]. I. Norberg, “Carbon Fibres from Kraft Lignin,” 2012, Accessed: Nov. 22, 2019. [Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-92256.
  • [9]. J. Hayashi, A. Kazehaya, K. Muroyama, and A. P. Watkinson, “Preparation of activated carbon from lignin by chemical activation,” Carbon, vol. 38, no. 13, pp. 1873–1878, Jan. 2000, doi: 10.1016/S0008-6223(00)00027-0.
  • [10]. M. Demir et al., “Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications,” International Journal of Energy Research, vol. 42, no. 8, pp. 2686–2700, 2018.
  • [11]. Adıgüzel Ali Osman, “LİGNOSELÜLOZİK BİYOKÜTLEDEN BİYOETANOL ÜRETİMİ.” Jan. 2011.
  • [12]. A. B. Hazar Yoruç and V. Uğraşkan, “Green Polymers and Applications,” Afyon Kocatepe University Journal of Sciences and Engineering, vol. 17, no. 1, pp. 318–337, Mar. 2017, doi: 10.5578/fmbd.53940.
  • [13]. P. Bajpai, “Lignin,” in Carbon Fibre from Lignin, Singapore: Springer Singapore, 2017, pp. 11–15.
  • [14]. Suhas, P. J. M. Carrott, and M. M. L. Ribeiro Carrott, “Lignin – from natural adsorbent to activated carbon: A review,” Bioresource Technology, vol. 98, no. 12, pp. 2301–2312, Sep. 2007, doi: 10.1016/j.biortech.2006.08.008.
  • [15]. W. O. S. Doherty, P. Mousavioun, and C. M. Fellows, “Value-adding to cellulosic ethanol: Lignin polymers,” Industrial Crops and Products, vol. 33, no. 2, pp. 259–276, Mar. 2011, doi: 10.1016/j.indcrop.2010.10.022.
  • [16]. T. Q. Hu, Chemical modification, properties, and usage of lignin. Springer, 2002.
  • [17]. S. Huş, “Lignin kullanış yerleri,” Journal of the Faculty of Forestry Istanbul University| İstanbul Üniversitesi Orman Fakültesi Dergisi, pp. 15–23, 1971.
  • [18]. R. Ding, H. Wu, M. Thunga, N. Bowler, and M. R. Kessler, “Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends,” Carbon, vol. 100, pp. 126–136, Apr. 2016, doi: 10.1016/j.carbon.2015.12.078.
  • [19]. E. Frank, L. M. Steudle, D. Ingildeev, J. M. Spörl, and M. R. Buchmeiser, “Carbon Fibers: Precursor Systems, Processing, Structure, and Properties,” Angewandte Chemie International Edition, vol. 53, no. 21, pp. 5262–5298, May 2014, doi: 10.1002/anie.201306129. [20]. J. F. Kadla, S. Kubo, R. D. Gilbert, and R. A. Venditti, “Lignin-based carbon fibers,” in Chemical Modification, Properties, and Usage of Lignin, Springer, 2002, pp. 121–137.
  • [21]. A. L. Compere, W. L. Griffith, C. F. Leitten Jr, and S. Petrovan, “Improving the fundamental properties of lignin-based carbon fiber for transportation applications,” in Proceedings of the 36th International SAMPE Technical Conference, 2004, pp. 2246–2254.
  • [22]. A. G. Dumanlı and A. H. Windle, “Carbon fibres from cellulosic precursors: a review,” Journal of Materials Science, vol. 47, no. 10, pp. 4236–4250, May 2012, doi: 10.1007/s10853-011-6081-8.
  • [23]. S. P. Maradur, C. H. Kim, S. Y. Kim, B.-H. Kim, W. C. Kim, and K. S. Yang, “Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile,” Synthetic Metals, vol. 162, no. 5–6, pp. 453–459, Apr. 2012, doi: 10.1016/j.synthmet.2012.01.017.
  • [24]. I. Norberg, Carbon fibres from kraft lignin. Stockholm: Chemical Science and Engineering, Royal Institute of Technology (KTH), 2012.
  • [25]. Omid Hosseinaei, David Harper, Joseph Bozell, and Timothy Rials, “Improving Processing and Performance of Pure Lignin Carbon Fibers through Hardwood and Herbaceous Lignin Blends,” International Journal of Molecular Sciences, vol. 18, no. 7, p. 1410, Jul. 2017, doi: 10.3390/ijms18071410.
  • [26]. D. A. Baker and T. G. Rials, “Recent advances in low-cost carbon fiber manufacture from lignin,” Journal of Applied Polymer Science, vol. 130, no. 2, pp. 713–728, Oct. 2013, doi: 10.1002/app.39273.
  • [27]. Y. Uraki, A. Nakatani, S. Kubo, and Y. Sano, “Preparation of activated carbon fibers with large specific surface area from softwood acetic acid lignin,” Journal of Wood Science, vol. 47, no. 6, pp. 465–469, 2001.
  • [28]. “Carbon Fiber Composite Materials | TORAY.” http://www.toray.com/products/prod_004.html (accessed Feb. 10, 2018).
  • [29]. “Carbon Fiber | CYTEC SOLVAY GROUP.” http://www.cytec.com/businesses/aerospace-materials/products/carbon-fiber (accessed Feb. 10, 2018).
  • [30]. S. Peng, H. Shao, and X. Hu, “Lyocell fibers as the precursor of carbon fibers,” Journal of applied polymer science, vol. 90, no. 7, pp. 1941–1947, 2003.

Investigation of Lignin as a Textile Fiber

Year 2020, Volume: 16 Issue: 2, 183 - 190, 24.06.2020

Abstract

Lignin is a substance that is in the state of waste in the forest industry and the paper industry, which is very much in the nature after cellulose. It is mentioned in the literature that lignin can be extracted as carbon fiber, which is a technical fiber, briefly used as raw material of carbon fiber. Although lignin is such an important area of use, unfortunately it cannot be effectively and adequately assessed, it is destroyed by burning in the heat recovery units in factories. This is how lignin is used in the worst way, leading to environmental problems. Evaluation of the lignin in the study, tensile strength as textile fibers was investigated. 11 lignin solutions and 4 Lignin-Polyvinyl Alcohol blends were formed. Blenders were pulled by electrospinning method, and fiber spinnability was investigated by a method which is similar to fiber spinning method solution to solution. Obtained results are given in table.

References

  • [1]. M. Demir et al., “Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin,” Industrial & Engineering Chemistry Research, vol. 54, no. 43, pp. 10731–10739, 2015.
  • [2]. S. Bilek, A. Y. Melikoğlu, and S. Cesur, “Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri ve Uygulama Alanları,” Akademik Gıda, vol. 17, no. 1, pp. 140–148.
  • [3]. N. KOLANKAYA and N. SAĞLAM, “Biyodelignifikasyon ve biyoteknolojik önemi,” Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, vol. 3, no. 3, 1988.
  • [4]. J. F. Kadla, S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compere, and W. Griffith, “Lignin-based carbon fibers for composite fiber applications,” Carbon, vol. 40, no. 15, pp. 2913–2920, 2002.
  • [5]. M. Zhang and A. A. Ogale, “Carbon fibers from dry-spinning of acetylated softwood kraft lignin,” Carbon, vol. 69, pp. 626–629, Apr. 2014, doi: 10.1016/j.carbon.2013.12.015.
  • [6]. K. Sudo, K. Shimizu, N. Nakashima, and A. Yokoyama, “A new modification method of exploded lignin for the preparation of a carbon fiber precursor,” Journal of Applied Polymer Science, vol. 48, no. 8, pp. 1485–1491, 1993, doi: 10.1002/app.1993.070480817.
  • [7]. H. Mainka et al., “Lignin – an alternative precursor for sustainable and cost-effective automotive carbon fiber,” Journal of Materials Research and Technology, vol. 4, no. 3, pp. 283–296, Jul. 2015, doi: 10.1016/j.jmrt.2015.03.004.
  • [8]. I. Norberg, “Carbon Fibres from Kraft Lignin,” 2012, Accessed: Nov. 22, 2019. [Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-92256.
  • [9]. J. Hayashi, A. Kazehaya, K. Muroyama, and A. P. Watkinson, “Preparation of activated carbon from lignin by chemical activation,” Carbon, vol. 38, no. 13, pp. 1873–1878, Jan. 2000, doi: 10.1016/S0008-6223(00)00027-0.
  • [10]. M. Demir et al., “Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications,” International Journal of Energy Research, vol. 42, no. 8, pp. 2686–2700, 2018.
  • [11]. Adıgüzel Ali Osman, “LİGNOSELÜLOZİK BİYOKÜTLEDEN BİYOETANOL ÜRETİMİ.” Jan. 2011.
  • [12]. A. B. Hazar Yoruç and V. Uğraşkan, “Green Polymers and Applications,” Afyon Kocatepe University Journal of Sciences and Engineering, vol. 17, no. 1, pp. 318–337, Mar. 2017, doi: 10.5578/fmbd.53940.
  • [13]. P. Bajpai, “Lignin,” in Carbon Fibre from Lignin, Singapore: Springer Singapore, 2017, pp. 11–15.
  • [14]. Suhas, P. J. M. Carrott, and M. M. L. Ribeiro Carrott, “Lignin – from natural adsorbent to activated carbon: A review,” Bioresource Technology, vol. 98, no. 12, pp. 2301–2312, Sep. 2007, doi: 10.1016/j.biortech.2006.08.008.
  • [15]. W. O. S. Doherty, P. Mousavioun, and C. M. Fellows, “Value-adding to cellulosic ethanol: Lignin polymers,” Industrial Crops and Products, vol. 33, no. 2, pp. 259–276, Mar. 2011, doi: 10.1016/j.indcrop.2010.10.022.
  • [16]. T. Q. Hu, Chemical modification, properties, and usage of lignin. Springer, 2002.
  • [17]. S. Huş, “Lignin kullanış yerleri,” Journal of the Faculty of Forestry Istanbul University| İstanbul Üniversitesi Orman Fakültesi Dergisi, pp. 15–23, 1971.
  • [18]. R. Ding, H. Wu, M. Thunga, N. Bowler, and M. R. Kessler, “Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends,” Carbon, vol. 100, pp. 126–136, Apr. 2016, doi: 10.1016/j.carbon.2015.12.078.
  • [19]. E. Frank, L. M. Steudle, D. Ingildeev, J. M. Spörl, and M. R. Buchmeiser, “Carbon Fibers: Precursor Systems, Processing, Structure, and Properties,” Angewandte Chemie International Edition, vol. 53, no. 21, pp. 5262–5298, May 2014, doi: 10.1002/anie.201306129. [20]. J. F. Kadla, S. Kubo, R. D. Gilbert, and R. A. Venditti, “Lignin-based carbon fibers,” in Chemical Modification, Properties, and Usage of Lignin, Springer, 2002, pp. 121–137.
  • [21]. A. L. Compere, W. L. Griffith, C. F. Leitten Jr, and S. Petrovan, “Improving the fundamental properties of lignin-based carbon fiber for transportation applications,” in Proceedings of the 36th International SAMPE Technical Conference, 2004, pp. 2246–2254.
  • [22]. A. G. Dumanlı and A. H. Windle, “Carbon fibres from cellulosic precursors: a review,” Journal of Materials Science, vol. 47, no. 10, pp. 4236–4250, May 2012, doi: 10.1007/s10853-011-6081-8.
  • [23]. S. P. Maradur, C. H. Kim, S. Y. Kim, B.-H. Kim, W. C. Kim, and K. S. Yang, “Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile,” Synthetic Metals, vol. 162, no. 5–6, pp. 453–459, Apr. 2012, doi: 10.1016/j.synthmet.2012.01.017.
  • [24]. I. Norberg, Carbon fibres from kraft lignin. Stockholm: Chemical Science and Engineering, Royal Institute of Technology (KTH), 2012.
  • [25]. Omid Hosseinaei, David Harper, Joseph Bozell, and Timothy Rials, “Improving Processing and Performance of Pure Lignin Carbon Fibers through Hardwood and Herbaceous Lignin Blends,” International Journal of Molecular Sciences, vol. 18, no. 7, p. 1410, Jul. 2017, doi: 10.3390/ijms18071410.
  • [26]. D. A. Baker and T. G. Rials, “Recent advances in low-cost carbon fiber manufacture from lignin,” Journal of Applied Polymer Science, vol. 130, no. 2, pp. 713–728, Oct. 2013, doi: 10.1002/app.39273.
  • [27]. Y. Uraki, A. Nakatani, S. Kubo, and Y. Sano, “Preparation of activated carbon fibers with large specific surface area from softwood acetic acid lignin,” Journal of Wood Science, vol. 47, no. 6, pp. 465–469, 2001.
  • [28]. “Carbon Fiber Composite Materials | TORAY.” http://www.toray.com/products/prod_004.html (accessed Feb. 10, 2018).
  • [29]. “Carbon Fiber | CYTEC SOLVAY GROUP.” http://www.cytec.com/businesses/aerospace-materials/products/carbon-fiber (accessed Feb. 10, 2018).
  • [30]. S. Peng, H. Shao, and X. Hu, “Lyocell fibers as the precursor of carbon fibers,” Journal of applied polymer science, vol. 90, no. 7, pp. 1941–1947, 2003.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mine Seçkin 0000-0002-9564-1534

İbrahim Üçgül

Publication Date June 24, 2020
Published in Issue Year 2020 Volume: 16 Issue: 2

Cite

APA Seçkin, M., & Üçgül, İ. (2020). Investigation of Lignin as a Textile Fiber. Celal Bayar University Journal of Science, 16(2), 183-190.
AMA Seçkin M, Üçgül İ. Investigation of Lignin as a Textile Fiber. CBUJOS. June 2020;16(2):183-190.
Chicago Seçkin, Mine, and İbrahim Üçgül. “Investigation of Lignin As a Textile Fiber”. Celal Bayar University Journal of Science 16, no. 2 (June 2020): 183-90.
EndNote Seçkin M, Üçgül İ (June 1, 2020) Investigation of Lignin as a Textile Fiber. Celal Bayar University Journal of Science 16 2 183–190.
IEEE M. Seçkin and İ. Üçgül, “Investigation of Lignin as a Textile Fiber”, CBUJOS, vol. 16, no. 2, pp. 183–190, 2020.
ISNAD Seçkin, Mine - Üçgül, İbrahim. “Investigation of Lignin As a Textile Fiber”. Celal Bayar University Journal of Science 16/2 (June 2020), 183-190.
JAMA Seçkin M, Üçgül İ. Investigation of Lignin as a Textile Fiber. CBUJOS. 2020;16:183–190.
MLA Seçkin, Mine and İbrahim Üçgül. “Investigation of Lignin As a Textile Fiber”. Celal Bayar University Journal of Science, vol. 16, no. 2, 2020, pp. 183-90.
Vancouver Seçkin M, Üçgül İ. Investigation of Lignin as a Textile Fiber. CBUJOS. 2020;16(2):183-90.