Research Article
BibTex RIS Cite
Year 2021, Volume: 17 Issue: 3, 261 - 266, 27.09.2021
https://doi.org/10.18466/cbayarfbe.869473

Abstract

References

  • 1. Çelik, İ., Karakoç, F., Çakır, M. C., Duysak, A. 2013. Hızlı Prototipleme Teknolojileri ve Uygulama Alanları. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31, 53-69.
  • 2. Mirón, V., Ferrándiz, S., Juárez, D., and Mengual, A. 2017. Manufacturing and characterization of 3D printer filament using tailoring materials. Procedia Manufacturing, 13, 888-894.
  • 3. Sa’ude, N., Kamarudin, K., Ibrahim, M., Ibrahim, M.H.I., 2015. Melt flow index of recycle ABS for fused deposition modeling (FDM) filament. Appl. Mech. Mater. 773-774, 3-7.
  • 4. Oussai, A., Barftai, Z., Katai, L., and Szalkai, I., 2019. Development of a Small Scale Plastic Recycling Technology and a Special Filament Product for 3D Printing. International Journal of Engineering and Management Science, 4.1 : 365-371.
  • 5. Dudek, P., 2013. FDM 3D printing technology in manufacturing composite elements, Arch. Metall. Mater. 58 (4) , 1415-1418.
  • 6. Angatkina, K. 2018. Recycling of HDPE from MSW waste to 3D printing filaments. Degree Thesis Materials Processing Technology.
  • 7. Romero-Alva V, Alvarado-Diaz W, Roman-Gonzalez A 2018. Design of a 3D printer and integrated supply system. IEEE XXV International conference on electronics, electrical enginlerine and computing.
  • 8. Mohammed, M.I.; Das, A.; Gomez-Kervin, E.; Wilson, D.; Gibson, I. 2017. EcoPrinting: Investigating the use of 100% recycled Acrylonitrile Butadiene Styrene (ABS) for Additive Manufacturing. Solid Freeform Fabrication. In Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium.
  • 9. Öz, Ö, Aydın, M, Kara, A, Sancak, M. 2018. Üç Boyutlu Yazıcılarda Kullanılan Doluluk Oranının Hasar Yüküne Olan Etkisinin Belirlenmesi. International Journal of 3D Printing Technologies and Digital Industry, 2 (1), 32-39.
  • 10. Yeşil, Ö., Mazanoğlu, K. 2018. Effects Of Filling Ratio, Orientation And Print Temperature On Bending Properties Of 3d Printed Pla Beams. Usak University Journal of Engineering Sciences. 1(2): 66-75.
  • 11. Corcione CE, Palumbo E, Masciullo A, Montagna F, Torricelli MC. 2018. Fused Deposition Modeling (FDM): an innovative technique aimed at reusing Lecce stone waste for industrial design and building applications. Constr Build Mater 158:276–284.
  • 12. Mohammed MI, Wilson D, Gomez-Kervin E, Rosson L, Long J. 2019. EcoPrinting: Investigation of Solar Powered Plastic Recycling and Additive Manufacturing for Enhanced Waste Management and Sustainable Manufacturing. IEEE Conf. Technol. Sustain. SusTech.
  • 13. Mohammed, M. I.; Mohan, M.; Das, A.; Johnson, M. D.; Singh Badwal, P.; McLean, D.; Gibson, I. 2017. A low carbon footprint approach to the reconstitution of plastics into 3D-printer filament for enhanced waste reduction. KnE Eng. 2 (2), 234−241.
  • 14. Pakkanen J, Manfredi D, Minetola P, Iuliano L 2017. About the use of recycled or biodegradable filaments for sustainability of 3d printing. In: International conference on sustainable design and manufacturing. 776–785.
  • 15. Chacón, J.M.; Caminero, M.A.; García-Plaza, E.; Núñez, P.J.; Reverte, J.M.; Becar, J.P. 2019. Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture.. Polymers, 11, 799.
  • 16. Lehrer, J., Scanlon, MR., The Development of a Sustainable Technology for 3D Printing Using Recycled Materials. 2017. Mid-Atlantic ASEE Conference.
  • 17. Rahimizadeh, A.; Kalman, J.; Fayazbakhsh, K.; Lessard, L. 2019. Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing. Compos. Part B 175, 107101.
  • 18. Hervan SZ, Parlar Z, Temiz V, et al. 2018. Friction and hardness characteristics of FDM-printed plastic materials. Proceedings of 21st international research/expert conference 65-68.
  • 19. Zander, N.E., 2019. Recycled polymer feedstocks for material extrusion additive manufacturing. Polymer-Based Additive Manufacturing: Recent Developments; ACS Symposium Series. 1315. American Chemical Society. 37-51.
  • 20. Dubashi, J., Grau, B. and McKernan, A. 2015. AkaBot 2.0: pet 3D printing filament from waste plastic.. Santa Clara: Santa Clara University.
  • 21. Aydın, M, Güler, B, Çeti̇nkaya, K. 2018. Dikey Ekstrüzyon (Filament) Sistemi Tasarım ve Prototip İmalatı. International Journal of 3D Printing Technologies and Digital Industry, 2 (1), 1-10.
  • 22. Haq, RHA., Wahab, S., Jaimi, NI., 2013. Fabrication Process of Polymer Nano-Composite Filament for Fused Deposition Modeling. Applied Mechanics and Materials. 465-466, 8-12.

Design and Manufacturing of The Prototype System for Recycling Waste Generated in 3 Dimensional Production to Filaments by Fused Deposition Modeling Method

Year 2021, Volume: 17 Issue: 3, 261 - 266, 27.09.2021
https://doi.org/10.18466/cbayarfbe.869473

Abstract

Nowadays, three-dimensional printers have come to an important place in many sectors with the development of technology. Printers that provide layered manufacturing have different raw materials requirements to be able to work the substance called filament is one of the raw materials of three-dimensional printers. The most preferred raw material for a three-dimensional printer is filament compared to other raw materials. The layered manufacturing device may take wrong printing or undesired printing for any reason. It is important to be able to recycle the product resulting from these printings. The aim of this work is to make the filament re-usable for layered manufacturing. With a structure consisting of crushers, extrusion, water and air cooling units, pulling, rotary, wrapper and automatic control units, a system including mechanical, electronic and software processes was designed, and filaments of desired dimensions were obtained within the scope of the study.

References

  • 1. Çelik, İ., Karakoç, F., Çakır, M. C., Duysak, A. 2013. Hızlı Prototipleme Teknolojileri ve Uygulama Alanları. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31, 53-69.
  • 2. Mirón, V., Ferrándiz, S., Juárez, D., and Mengual, A. 2017. Manufacturing and characterization of 3D printer filament using tailoring materials. Procedia Manufacturing, 13, 888-894.
  • 3. Sa’ude, N., Kamarudin, K., Ibrahim, M., Ibrahim, M.H.I., 2015. Melt flow index of recycle ABS for fused deposition modeling (FDM) filament. Appl. Mech. Mater. 773-774, 3-7.
  • 4. Oussai, A., Barftai, Z., Katai, L., and Szalkai, I., 2019. Development of a Small Scale Plastic Recycling Technology and a Special Filament Product for 3D Printing. International Journal of Engineering and Management Science, 4.1 : 365-371.
  • 5. Dudek, P., 2013. FDM 3D printing technology in manufacturing composite elements, Arch. Metall. Mater. 58 (4) , 1415-1418.
  • 6. Angatkina, K. 2018. Recycling of HDPE from MSW waste to 3D printing filaments. Degree Thesis Materials Processing Technology.
  • 7. Romero-Alva V, Alvarado-Diaz W, Roman-Gonzalez A 2018. Design of a 3D printer and integrated supply system. IEEE XXV International conference on electronics, electrical enginlerine and computing.
  • 8. Mohammed, M.I.; Das, A.; Gomez-Kervin, E.; Wilson, D.; Gibson, I. 2017. EcoPrinting: Investigating the use of 100% recycled Acrylonitrile Butadiene Styrene (ABS) for Additive Manufacturing. Solid Freeform Fabrication. In Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium.
  • 9. Öz, Ö, Aydın, M, Kara, A, Sancak, M. 2018. Üç Boyutlu Yazıcılarda Kullanılan Doluluk Oranının Hasar Yüküne Olan Etkisinin Belirlenmesi. International Journal of 3D Printing Technologies and Digital Industry, 2 (1), 32-39.
  • 10. Yeşil, Ö., Mazanoğlu, K. 2018. Effects Of Filling Ratio, Orientation And Print Temperature On Bending Properties Of 3d Printed Pla Beams. Usak University Journal of Engineering Sciences. 1(2): 66-75.
  • 11. Corcione CE, Palumbo E, Masciullo A, Montagna F, Torricelli MC. 2018. Fused Deposition Modeling (FDM): an innovative technique aimed at reusing Lecce stone waste for industrial design and building applications. Constr Build Mater 158:276–284.
  • 12. Mohammed MI, Wilson D, Gomez-Kervin E, Rosson L, Long J. 2019. EcoPrinting: Investigation of Solar Powered Plastic Recycling and Additive Manufacturing for Enhanced Waste Management and Sustainable Manufacturing. IEEE Conf. Technol. Sustain. SusTech.
  • 13. Mohammed, M. I.; Mohan, M.; Das, A.; Johnson, M. D.; Singh Badwal, P.; McLean, D.; Gibson, I. 2017. A low carbon footprint approach to the reconstitution of plastics into 3D-printer filament for enhanced waste reduction. KnE Eng. 2 (2), 234−241.
  • 14. Pakkanen J, Manfredi D, Minetola P, Iuliano L 2017. About the use of recycled or biodegradable filaments for sustainability of 3d printing. In: International conference on sustainable design and manufacturing. 776–785.
  • 15. Chacón, J.M.; Caminero, M.A.; García-Plaza, E.; Núñez, P.J.; Reverte, J.M.; Becar, J.P. 2019. Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture.. Polymers, 11, 799.
  • 16. Lehrer, J., Scanlon, MR., The Development of a Sustainable Technology for 3D Printing Using Recycled Materials. 2017. Mid-Atlantic ASEE Conference.
  • 17. Rahimizadeh, A.; Kalman, J.; Fayazbakhsh, K.; Lessard, L. 2019. Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing. Compos. Part B 175, 107101.
  • 18. Hervan SZ, Parlar Z, Temiz V, et al. 2018. Friction and hardness characteristics of FDM-printed plastic materials. Proceedings of 21st international research/expert conference 65-68.
  • 19. Zander, N.E., 2019. Recycled polymer feedstocks for material extrusion additive manufacturing. Polymer-Based Additive Manufacturing: Recent Developments; ACS Symposium Series. 1315. American Chemical Society. 37-51.
  • 20. Dubashi, J., Grau, B. and McKernan, A. 2015. AkaBot 2.0: pet 3D printing filament from waste plastic.. Santa Clara: Santa Clara University.
  • 21. Aydın, M, Güler, B, Çeti̇nkaya, K. 2018. Dikey Ekstrüzyon (Filament) Sistemi Tasarım ve Prototip İmalatı. International Journal of 3D Printing Technologies and Digital Industry, 2 (1), 1-10.
  • 22. Haq, RHA., Wahab, S., Jaimi, NI., 2013. Fabrication Process of Polymer Nano-Composite Filament for Fused Deposition Modeling. Applied Mechanics and Materials. 465-466, 8-12.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İlker Ertuna 0000-0001-5388-6819

Uğur Can Topçu 0000-0002-2739-3401

Çağrı Yalçınkaya 0000-0002-0974-9320

Defne Açıkgöz This is me 0000-0002-7950-4281

Ezgi Cırık 0000-0002-8263-1484

Ceren Göde 0000-0001-6819-4620

Publication Date September 27, 2021
Published in Issue Year 2021 Volume: 17 Issue: 3

Cite

APA Ertuna, İ., Topçu, U. C., Yalçınkaya, Ç., Açıkgöz, D., et al. (2021). Design and Manufacturing of The Prototype System for Recycling Waste Generated in 3 Dimensional Production to Filaments by Fused Deposition Modeling Method. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 17(3), 261-266. https://doi.org/10.18466/cbayarfbe.869473
AMA Ertuna İ, Topçu UC, Yalçınkaya Ç, Açıkgöz D, Cırık E, Göde C. Design and Manufacturing of The Prototype System for Recycling Waste Generated in 3 Dimensional Production to Filaments by Fused Deposition Modeling Method. CBUJOS. September 2021;17(3):261-266. doi:10.18466/cbayarfbe.869473
Chicago Ertuna, İlker, Uğur Can Topçu, Çağrı Yalçınkaya, Defne Açıkgöz, Ezgi Cırık, and Ceren Göde. “Design and Manufacturing of The Prototype System for Recycling Waste Generated in 3 Dimensional Production to Filaments by Fused Deposition Modeling Method”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17, no. 3 (September 2021): 261-66. https://doi.org/10.18466/cbayarfbe.869473.
EndNote Ertuna İ, Topçu UC, Yalçınkaya Ç, Açıkgöz D, Cırık E, Göde C (September 1, 2021) Design and Manufacturing of The Prototype System for Recycling Waste Generated in 3 Dimensional Production to Filaments by Fused Deposition Modeling Method. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17 3 261–266.
IEEE İ. Ertuna, U. C. Topçu, Ç. Yalçınkaya, D. Açıkgöz, E. Cırık, and C. Göde, “Design and Manufacturing of The Prototype System for Recycling Waste Generated in 3 Dimensional Production to Filaments by Fused Deposition Modeling Method”, CBUJOS, vol. 17, no. 3, pp. 261–266, 2021, doi: 10.18466/cbayarfbe.869473.
ISNAD Ertuna, İlker et al. “Design and Manufacturing of The Prototype System for Recycling Waste Generated in 3 Dimensional Production to Filaments by Fused Deposition Modeling Method”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17/3 (September 2021), 261-266. https://doi.org/10.18466/cbayarfbe.869473.
JAMA Ertuna İ, Topçu UC, Yalçınkaya Ç, Açıkgöz D, Cırık E, Göde C. Design and Manufacturing of The Prototype System for Recycling Waste Generated in 3 Dimensional Production to Filaments by Fused Deposition Modeling Method. CBUJOS. 2021;17:261–266.
MLA Ertuna, İlker et al. “Design and Manufacturing of The Prototype System for Recycling Waste Generated in 3 Dimensional Production to Filaments by Fused Deposition Modeling Method”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 17, no. 3, 2021, pp. 261-6, doi:10.18466/cbayarfbe.869473.
Vancouver Ertuna İ, Topçu UC, Yalçınkaya Ç, Açıkgöz D, Cırık E, Göde C. Design and Manufacturing of The Prototype System for Recycling Waste Generated in 3 Dimensional Production to Filaments by Fused Deposition Modeling Method. CBUJOS. 2021;17(3):261-6.