Research Article
BibTex RIS Cite

Modification of Asphalt Binder with Waste Expanded Polystyrene (EPS) Foam

Year 2021, Volume: 17 Issue: 3, 245 - 252, 27.09.2021
https://doi.org/10.18466/cbayarfbe.885696

Abstract

Waste polymers are widely used in asphalt modification, especially, in order to reduce their detrimental effect on the environment. This study discusses the usability of waste expanded polystyrene (EPS) foam in asphalt modification. In this respect, the EPS foam, which produces waste in both production and use stages, was mixed with bitumen by weight at the ratios of 2%, 4%, 6%, and 8%, and dry modification method was employed. The penetration, ductility, softening point, flash point, and specific gravity values of virgin bitumen were compared with waste EPS foam modified bitumen. The comparison was made by both graphical and statistical methods. A strong correlation between the physical properties of modified asphalt and the ratio of EPS foam was observed. A drop was observed in penetration and ductility values. Besides, it was found by statistical analyses that 2% of the increase in the additive ratio is not sufficient to make a significant difference in the physical properties of bitumen, therefore, the increase should be at least 4%. Overall, it is concluded that EPS foam additive can be used in bitumen modification for hot regions where low penetration is required.

References

  • 1. Papagiannakis, A.T. and Masad, E.A. Pavement Design and Materials; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2008.
  • 2. Baytekin, B., Baytekin, H.T., and Grzybowski, B.A. 2013. Retrieving and converting energy from polymers: Deployable technologies and emerging concepts. Energy and Environmental Science. 6 (12): 3467–3482.
  • 3. Hearon, K., Nash, L.D., Rodriguez, J.N., Lonnecker, A.T., Raymond, J.E., Wilson, T.S., Wooley, K.L., and Maitland, D.J. 2014. A high-performance recycling solution for polystyrene achieved by the synthesis of renewable poly(thioether) networks derived from d -limonene. Advanced Materials. 26 (10): 1552–1558.
  • 4. Pol, V.G. 2010. Upcycling: Converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres. Environmental Science and Technology. 44 (12): 4753–4759.
  • 5. Mohamed, N., Maharaj, R., and Ramlochan, D. 2017. Rutting and fatigue cracking susceptibility of polystyrene modified asphalt. Am J Appl Sci. 14 (5): 583–591.
  • 6. Casey, D., McNally, C., Gibney, A., and Gilchrist, M.D. 2008. Development of a recycled polymer modified binder for use in stone mastic asphalt. Resources, Conservation and Recycling. 52 (10): 1167–1174.
  • 7. Polacco, G., Berlincioni, S., Biondi, D., Stastna, J., and Zanzotto, L. 2005. Asphalt modification with different polyethylene-based polymers. European Polymer Journal. 41 (12): 2831–2844.
  • 8. Baker, M.B., Abendeh, R., Abu-Salem, Z., and Khedaywi, T. 2016. Production of sustainable asphalt mixes using recycled polystyrene. International Journal of Applied Environmental Sciences. 11 (1): 183–192.
  • 9. Vila-Cortavitarte, M., Lastra-González, P., Calzada-Pérez, M.Á., and Indacoechea-Vega, I. 2018. Analysis of the influence of using recycled polystyrene as a substitute for bitumen in the behaviour of asphalt concrete mixtures. Journal of Cleaner Production. 170 1279–1287.
  • 10. Padhan, R.K., Sreeram, A., and Gupta, A. 2020. Evaluation of trans-polyoctenamer and cross-linking agents on the performance of waste polystyrene modified asphalt. Road Materials and Pavement Design. 21 (4): 1170–1182.
  • 11. Barzegari, M.R., Yousefi, A.A., and Zeynali, M.E. 2002. Bitumen modification via PS/PB Blend. Iranian Journal of Polymer Science and Technology (Persian).
  • 12. Nciri, N., Shin, T., and Cho, N. 2020. Towards the Use of Waste Expanded Polystyrene as Potential Modifier for Flexible Road Pavements. Materials Today: Proceedings. 24 763–771.
  • 13. Nassar, I.M., Kabel, K.I., and Ibrahim, I.M. 2012. Evaluation of the Effect of Waste Polystyrene on Performance of Asphalt Binder. ARPN Journal of Science and Technology. 2 (10): 927–935.
  • 14. Al-Haydari, I.S.J. and Masued, G.G. 2017. Benefit of Using Expanded Polystyrene Packaging Material To Improve Pavement Mixture Properties. Applied Research Journal. 3 (11): 332–342.
  • 15. TÜPRAŞ 2020. Product Specification.
  • 16. Fisher, R.A. 1992. Statistical methods for research workers. in: Breakthroughs in Statistics, Springer: pp. 66–70.
  • 17. Zaniewski, J.P. and Pumphrey, M.E. 2004. Evaluation of Performance Graded Asphalt Binder Equipment and Testing Protocol; 2004.
  • 18. Airey, G.D. 2003. Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel. 82 (14): 1709–1719.
  • 19. Arslan, D., Gürü, M., and Çubuk, M.K. 2013. Bitüm ve Bitümlü Karışımların Performans Özelliklerinin Organik Esaslı Çinkofosfat Bileşiği İle Geliştirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 27 (2)
  • 20. Keyf, S. 2010. SBS ve Reaktif Terpolimer İle Modifiye Edilmiş Bitümde Penetrasyon ve Penetrasyon İndeksinin İncelenmesi. Sigma Journal of Engineering and Natural Sciences. 28 (1): 26–34.
  • 21. Cong, Y., Huang, W., and Liao, K. 2008. Compatibility between SBS and Asphalt. Petroleum Science and Technology. 26 (3): 346–352.
  • 22. Alsheyab, M.A.T. and Khedaywi, T.S. 2013. Effect of electric arc furnace dust (EAFD) on properties of asphalt cement mixture. Resources, Conservation and Recycling. 70 38–43.
  • 23. Read, J. and Whiteoak, D. The Shell Bitumen Handbook Fifth edition, Exhibit 1008; Thomas Telford Publishing: 2003.
Year 2021, Volume: 17 Issue: 3, 245 - 252, 27.09.2021
https://doi.org/10.18466/cbayarfbe.885696

Abstract

References

  • 1. Papagiannakis, A.T. and Masad, E.A. Pavement Design and Materials; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2008.
  • 2. Baytekin, B., Baytekin, H.T., and Grzybowski, B.A. 2013. Retrieving and converting energy from polymers: Deployable technologies and emerging concepts. Energy and Environmental Science. 6 (12): 3467–3482.
  • 3. Hearon, K., Nash, L.D., Rodriguez, J.N., Lonnecker, A.T., Raymond, J.E., Wilson, T.S., Wooley, K.L., and Maitland, D.J. 2014. A high-performance recycling solution for polystyrene achieved by the synthesis of renewable poly(thioether) networks derived from d -limonene. Advanced Materials. 26 (10): 1552–1558.
  • 4. Pol, V.G. 2010. Upcycling: Converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres. Environmental Science and Technology. 44 (12): 4753–4759.
  • 5. Mohamed, N., Maharaj, R., and Ramlochan, D. 2017. Rutting and fatigue cracking susceptibility of polystyrene modified asphalt. Am J Appl Sci. 14 (5): 583–591.
  • 6. Casey, D., McNally, C., Gibney, A., and Gilchrist, M.D. 2008. Development of a recycled polymer modified binder for use in stone mastic asphalt. Resources, Conservation and Recycling. 52 (10): 1167–1174.
  • 7. Polacco, G., Berlincioni, S., Biondi, D., Stastna, J., and Zanzotto, L. 2005. Asphalt modification with different polyethylene-based polymers. European Polymer Journal. 41 (12): 2831–2844.
  • 8. Baker, M.B., Abendeh, R., Abu-Salem, Z., and Khedaywi, T. 2016. Production of sustainable asphalt mixes using recycled polystyrene. International Journal of Applied Environmental Sciences. 11 (1): 183–192.
  • 9. Vila-Cortavitarte, M., Lastra-González, P., Calzada-Pérez, M.Á., and Indacoechea-Vega, I. 2018. Analysis of the influence of using recycled polystyrene as a substitute for bitumen in the behaviour of asphalt concrete mixtures. Journal of Cleaner Production. 170 1279–1287.
  • 10. Padhan, R.K., Sreeram, A., and Gupta, A. 2020. Evaluation of trans-polyoctenamer and cross-linking agents on the performance of waste polystyrene modified asphalt. Road Materials and Pavement Design. 21 (4): 1170–1182.
  • 11. Barzegari, M.R., Yousefi, A.A., and Zeynali, M.E. 2002. Bitumen modification via PS/PB Blend. Iranian Journal of Polymer Science and Technology (Persian).
  • 12. Nciri, N., Shin, T., and Cho, N. 2020. Towards the Use of Waste Expanded Polystyrene as Potential Modifier for Flexible Road Pavements. Materials Today: Proceedings. 24 763–771.
  • 13. Nassar, I.M., Kabel, K.I., and Ibrahim, I.M. 2012. Evaluation of the Effect of Waste Polystyrene on Performance of Asphalt Binder. ARPN Journal of Science and Technology. 2 (10): 927–935.
  • 14. Al-Haydari, I.S.J. and Masued, G.G. 2017. Benefit of Using Expanded Polystyrene Packaging Material To Improve Pavement Mixture Properties. Applied Research Journal. 3 (11): 332–342.
  • 15. TÜPRAŞ 2020. Product Specification.
  • 16. Fisher, R.A. 1992. Statistical methods for research workers. in: Breakthroughs in Statistics, Springer: pp. 66–70.
  • 17. Zaniewski, J.P. and Pumphrey, M.E. 2004. Evaluation of Performance Graded Asphalt Binder Equipment and Testing Protocol; 2004.
  • 18. Airey, G.D. 2003. Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel. 82 (14): 1709–1719.
  • 19. Arslan, D., Gürü, M., and Çubuk, M.K. 2013. Bitüm ve Bitümlü Karışımların Performans Özelliklerinin Organik Esaslı Çinkofosfat Bileşiği İle Geliştirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 27 (2)
  • 20. Keyf, S. 2010. SBS ve Reaktif Terpolimer İle Modifiye Edilmiş Bitümde Penetrasyon ve Penetrasyon İndeksinin İncelenmesi. Sigma Journal of Engineering and Natural Sciences. 28 (1): 26–34.
  • 21. Cong, Y., Huang, W., and Liao, K. 2008. Compatibility between SBS and Asphalt. Petroleum Science and Technology. 26 (3): 346–352.
  • 22. Alsheyab, M.A.T. and Khedaywi, T.S. 2013. Effect of electric arc furnace dust (EAFD) on properties of asphalt cement mixture. Resources, Conservation and Recycling. 70 38–43.
  • 23. Read, J. and Whiteoak, D. The Shell Bitumen Handbook Fifth edition, Exhibit 1008; Thomas Telford Publishing: 2003.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Kürşat Yıldız 0000-0003-2205-9997

Harun Kınacı 0000-0002-8572-1143

Mert Atakan 0000-0003-1878-2111

Publication Date September 27, 2021
Published in Issue Year 2021 Volume: 17 Issue: 3

Cite

APA Yıldız, K., Kınacı, H., & Atakan, M. (2021). Modification of Asphalt Binder with Waste Expanded Polystyrene (EPS) Foam. Celal Bayar University Journal of Science, 17(3), 245-252. https://doi.org/10.18466/cbayarfbe.885696
AMA Yıldız K, Kınacı H, Atakan M. Modification of Asphalt Binder with Waste Expanded Polystyrene (EPS) Foam. CBUJOS. September 2021;17(3):245-252. doi:10.18466/cbayarfbe.885696
Chicago Yıldız, Kürşat, Harun Kınacı, and Mert Atakan. “Modification of Asphalt Binder With Waste Expanded Polystyrene (EPS) Foam”. Celal Bayar University Journal of Science 17, no. 3 (September 2021): 245-52. https://doi.org/10.18466/cbayarfbe.885696.
EndNote Yıldız K, Kınacı H, Atakan M (September 1, 2021) Modification of Asphalt Binder with Waste Expanded Polystyrene (EPS) Foam. Celal Bayar University Journal of Science 17 3 245–252.
IEEE K. Yıldız, H. Kınacı, and M. Atakan, “Modification of Asphalt Binder with Waste Expanded Polystyrene (EPS) Foam”, CBUJOS, vol. 17, no. 3, pp. 245–252, 2021, doi: 10.18466/cbayarfbe.885696.
ISNAD Yıldız, Kürşat et al. “Modification of Asphalt Binder With Waste Expanded Polystyrene (EPS) Foam”. Celal Bayar University Journal of Science 17/3 (September 2021), 245-252. https://doi.org/10.18466/cbayarfbe.885696.
JAMA Yıldız K, Kınacı H, Atakan M. Modification of Asphalt Binder with Waste Expanded Polystyrene (EPS) Foam. CBUJOS. 2021;17:245–252.
MLA Yıldız, Kürşat et al. “Modification of Asphalt Binder With Waste Expanded Polystyrene (EPS) Foam”. Celal Bayar University Journal of Science, vol. 17, no. 3, 2021, pp. 245-52, doi:10.18466/cbayarfbe.885696.
Vancouver Yıldız K, Kınacı H, Atakan M. Modification of Asphalt Binder with Waste Expanded Polystyrene (EPS) Foam. CBUJOS. 2021;17(3):245-52.