Airplanes are the most popular way of transportation worldwide, especially for long haul. It facilitates the growth of global trade as well, besides promoting tourism and other employment developments. Passenger comfort and hygiene inside an airplane cabin became main concern for aircraft manufacturers. The possibility for a potential spread of infectious virus or bacteria even maximized this concern. Therefore, supplying sterile and particle-free air inside the aircraft cabin became extremely crucial more than ever. In order to ensure comfort and hygiene, regardless of the environment conditions inside the aircraft cabin, paved the way for researchers to focus on this topic, recently. It is obvious that, an important precaution for the spread of micro-organisms can be selecting an adequate air ventilation system inside the airplane cabin. In this study, a part of an airplane passenger cabin is modelled for four different scenarios. The streamlines of air, which is sent to the cabin from air ducts, are obtained and air flow path is observed for the investigated cases. The results of the numerical simulations are presented as the outcomes of this study. It is observed that the air mixing between different seat rows occur slightly only for sidewall supply and bottom return mixing ventilation and displacement ventilation systems, whereas the air mixing for the same seat row is seen for all ventilation systems. In conclusion, sidewall supply and bottom return mixing ventilation system is found the most appropriate one, even though it causes air recirculation at the same row seats.
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | December 26, 2022 |
Published in Issue | Year 2022 Volume: 18 Issue: 4 |