Research Article
BibTex RIS Cite

Modeling of the Cooling of the Batteries of Electric Vehicles Using the Cabin Air Conditioning System

Year 2023, Volume: 19 Issue: 3, 205 - 210, 30.09.2023
https://doi.org/10.18466/cbayarfbe.1247445

Abstract

In this study, a simulation on management of battery temperature, which is a significant problem for electric vehicles, has been made. Battery temperatures can reach up to 50 oC if not checked during quick charging and discharging processes. Such situation shortens the lifetime of battery and also increases the temperature inside the cabin. More importantly, they can be dangerous. LMS Amesim software and WLTC driving cycle have been used for the simulation. Three battery packages have been used in simulations. Temperature of the battery have been checked at three different ambient temperatures (25 oC, 30 oC, 35 oC). During the test, it has been enhanced to keep the battery temperature below 35 oC under all conditions. Air-conditioner of the vehicle has been used to cool the batteries. When the temperature increased, the air-conditioner automatically checked the operating cycle of the compressor and cooled the batteries by means of constant air flow. In conclusion, the simulation has kept the battery temperature at desired level at ambient temperatures of 25 oC and 30 oC. At ambient temperature of 35oC, battery temperature increased up to 35.2oC.

References

  • [1]. Behi, H., Karimi, D., Jaguemont, J., Gandoman, F.H., Kalogiannis, T., Berecibar, M., Mierlo, J.V. (2021). Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications. Energy, 224: 1-17. https://doi.org/10.1016/j.energy.2021.120165.
  • [2] Kunt, M.A. (2022). Analysis of engine and powertrain losses of a passenger type 4-stroke gasoline vehicle in 4 different driving cycles with gt-suıte vehicle simulation program. International Journal of Automotive Science and Technology, 6(4): 340-346. https://doi.org/10.30939/ijastech.1152980.
  • [3] Kunt, M.A. (2021). Analysis of The Effect of Different Gearbox/Transmission Types on Driveline Friction Losses by Means of Gt Suite Simulation Programme. International Journal of Automotive Science and Technology, 5(3): 271-280.
  • [4] Sevim, E., Çetin, E. (2022). The performance comparison of the sic and si mosfets used in the 3-phase brushless DC motor drives for electric vehicles. International Journal of Automotive Science and Technology, 6(4): 331-339. https://doi.org/10.30939/ijastech.1132500.
  • [5] Prajapati, K.C., Patel, R., Sagar, R. (2014). Hybrid vehicle: a study on technology. International Journal of Engineering Research & Technology, 3 (12): 1076-1082.
  • [6] León, R., Montaleza, C., Maldonado, J.L., Véliz, M.T., Jurado, F. (2021). Hybrid electric vehicles: a review of existing configurations and thermodynamic cycles. Thermo, 1 (2): 134-150. https://doi.org/10.3390/thermo1020010
  • [7] Moawad, A., Rousseau, A. (2012). Effect of Electric Drive Vehicle Technologies on Fuel Efficiency – Final Report. Argonne National Laboratory, Chicago.
  • [8] Cheng, K.W.E. (2009). Recent development on electric vehicles. 3rd International conference on power electronics systems and applications.
  • [9] Lalith, D.V., Ghatge, G.C., Setloor, K.G. (2021). Electric and hybrid electric vehicles. International Journal of Research and Analytical Reviews, 8 (4): 76-82.
  • [10] Sanguesa, J.A., Sanz, V.T., Garrido, P., Martinez, F.J., Barja, J.M.M. (2021). A review on electric vehicles: technologies and challenges. Smart Cities, 4 (1): 372-404. https://doi.org/10.3390/smartcities4010022
  • [11] Kiyakli, A.O., Solmaz, H. (2018). Modeling of an electric vehicle with matlab/simulink. International Journal of Automotive Science and Technology, 2 (4): 9-15. 10.30939/ijastech..475477
  • [12] Wang, Z., Zhang, J., Liu, P., Qu, C., Li, X. (2019). Driving cycle construction for electric vehicle based on markov chain and monte carlo method: acase study in Beijing. Energy Procedia, 158: 2494-2499. https://doi.org/10.1016/j.egypro.2019.01.389.
  • [13] Pfriem1, M., Gauterin, F. (2016). Development of real-world driving cycles for battery electric vehicles. EVS29 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium. 1-11.
  • [14] Micari, S., Foti, S., Testa, A., De Caro, S., Sergi, F., Andaloro, L., Aloisio, D., Leonardi, S.G., Napoli, G. (2022). Effect of WLTP class 3B driving cycle on lithium-ion battery for electric vehicles. Energies, 15 (8): 1-25. https://doi.org/10.3390/en15186703.
  • [15] Asef, P., Milan, M., Lapthorn, A., Padmanaban, S. (2021). Future trends and aging analysis of battery energy storage systems for electric vehicles. Sustainability, 13(24): 1-28. https://doi.org/10.3390/su132413779.
  • [16] Berjoza, D., Pirs, V., Jurgena, I. (2022). Research into the regenerative braking of an electric car in urban driving. World Electric Vehicle Journal, 13(11): 1-13. https://doi.org/10.3390/wevj13110202.
  • [17] Xu1, Z., Jiang, D., Li, M., Ning, P., Wang, F., Liang, Z. (2012). Si IGBT phase-leg module packaging and cooling design for operation at 200 °C in hybrid electrical vehicle applications. 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 483-490.
  • [18] Behi, H., Karimi, D., Youssef, R., Patil, M.S., Mierlo, J.V., Berecibar, M. (2021). Comprehensive passive thermal management systems for electric vehicles. Energies, 14 (13): 1-15. https://doi.org/10.3390/en14133881.
  • [19] Soltani, M., Ronsmans, J., Jaguemont, J., Mierlo, J.V., Bossche, P.V., Omar, N. (2019). A Three-dimensional thermal model for a commercial lithium-ion capacitor battery pack with non-uniform temperature distribution. 2019 IEEE International Conference on Industrial Technology (ICIT), 1126-1131. 10.1109/ICIT.2019.8755081.
  • [20] Behi, H., Karimi, D., Behi, M., Ghanbarpour, M., Jaguemont, J., Sokkeh, M.A., Gandoman, F.H., Berecibar, M., Mierlo, J.V. (2020). A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Applied Thermal Engineering, 174: 1-14. https://doi.org/10.1016/j.applthermaleng.2020.115280.
  • [21] Behi, H., Behi, M., Karimi, D., Jaguemont, J., Ghanbarpour, M., Behnia, M., Berecibar, M., Mierlo, J.V. (2021). Heat pipe air-cooled thermal management system for lithium-ion batteries: High power applications. Applied Thermal Engineering, 183: 1-13. https://doi.org/10.1016/j.applthermaleng.2020.116240.
  • [22] Al-Zareer, M., Dinçer, I., Rosen, M.A. (2017). Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles. Electrochimica Acta, 247: 171-182. http://dx.doi.org/10.1016/j.electacta.2017.06.162.
  • [23] Monika, K., Chakraborty, C., Roy, S., Dinda, S., Singh. S.A., Datta. S.P. (2021). An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles. Journal of Energy Storage, 35: 1-15. https://doi.org/10.1016/j.est.2021.102301
  • [24] Lu, M., Zhang, X., Ji, J., Xu, X., Zhang, Y. (2020). Research progress on power battery cooling technology for electric vehicles. J. Energy Storage, 27: https://doi.org/10.1016/J.EST.2019.101155.
Year 2023, Volume: 19 Issue: 3, 205 - 210, 30.09.2023
https://doi.org/10.18466/cbayarfbe.1247445

Abstract

References

  • [1]. Behi, H., Karimi, D., Jaguemont, J., Gandoman, F.H., Kalogiannis, T., Berecibar, M., Mierlo, J.V. (2021). Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications. Energy, 224: 1-17. https://doi.org/10.1016/j.energy.2021.120165.
  • [2] Kunt, M.A. (2022). Analysis of engine and powertrain losses of a passenger type 4-stroke gasoline vehicle in 4 different driving cycles with gt-suıte vehicle simulation program. International Journal of Automotive Science and Technology, 6(4): 340-346. https://doi.org/10.30939/ijastech.1152980.
  • [3] Kunt, M.A. (2021). Analysis of The Effect of Different Gearbox/Transmission Types on Driveline Friction Losses by Means of Gt Suite Simulation Programme. International Journal of Automotive Science and Technology, 5(3): 271-280.
  • [4] Sevim, E., Çetin, E. (2022). The performance comparison of the sic and si mosfets used in the 3-phase brushless DC motor drives for electric vehicles. International Journal of Automotive Science and Technology, 6(4): 331-339. https://doi.org/10.30939/ijastech.1132500.
  • [5] Prajapati, K.C., Patel, R., Sagar, R. (2014). Hybrid vehicle: a study on technology. International Journal of Engineering Research & Technology, 3 (12): 1076-1082.
  • [6] León, R., Montaleza, C., Maldonado, J.L., Véliz, M.T., Jurado, F. (2021). Hybrid electric vehicles: a review of existing configurations and thermodynamic cycles. Thermo, 1 (2): 134-150. https://doi.org/10.3390/thermo1020010
  • [7] Moawad, A., Rousseau, A. (2012). Effect of Electric Drive Vehicle Technologies on Fuel Efficiency – Final Report. Argonne National Laboratory, Chicago.
  • [8] Cheng, K.W.E. (2009). Recent development on electric vehicles. 3rd International conference on power electronics systems and applications.
  • [9] Lalith, D.V., Ghatge, G.C., Setloor, K.G. (2021). Electric and hybrid electric vehicles. International Journal of Research and Analytical Reviews, 8 (4): 76-82.
  • [10] Sanguesa, J.A., Sanz, V.T., Garrido, P., Martinez, F.J., Barja, J.M.M. (2021). A review on electric vehicles: technologies and challenges. Smart Cities, 4 (1): 372-404. https://doi.org/10.3390/smartcities4010022
  • [11] Kiyakli, A.O., Solmaz, H. (2018). Modeling of an electric vehicle with matlab/simulink. International Journal of Automotive Science and Technology, 2 (4): 9-15. 10.30939/ijastech..475477
  • [12] Wang, Z., Zhang, J., Liu, P., Qu, C., Li, X. (2019). Driving cycle construction for electric vehicle based on markov chain and monte carlo method: acase study in Beijing. Energy Procedia, 158: 2494-2499. https://doi.org/10.1016/j.egypro.2019.01.389.
  • [13] Pfriem1, M., Gauterin, F. (2016). Development of real-world driving cycles for battery electric vehicles. EVS29 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium. 1-11.
  • [14] Micari, S., Foti, S., Testa, A., De Caro, S., Sergi, F., Andaloro, L., Aloisio, D., Leonardi, S.G., Napoli, G. (2022). Effect of WLTP class 3B driving cycle on lithium-ion battery for electric vehicles. Energies, 15 (8): 1-25. https://doi.org/10.3390/en15186703.
  • [15] Asef, P., Milan, M., Lapthorn, A., Padmanaban, S. (2021). Future trends and aging analysis of battery energy storage systems for electric vehicles. Sustainability, 13(24): 1-28. https://doi.org/10.3390/su132413779.
  • [16] Berjoza, D., Pirs, V., Jurgena, I. (2022). Research into the regenerative braking of an electric car in urban driving. World Electric Vehicle Journal, 13(11): 1-13. https://doi.org/10.3390/wevj13110202.
  • [17] Xu1, Z., Jiang, D., Li, M., Ning, P., Wang, F., Liang, Z. (2012). Si IGBT phase-leg module packaging and cooling design for operation at 200 °C in hybrid electrical vehicle applications. 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 483-490.
  • [18] Behi, H., Karimi, D., Youssef, R., Patil, M.S., Mierlo, J.V., Berecibar, M. (2021). Comprehensive passive thermal management systems for electric vehicles. Energies, 14 (13): 1-15. https://doi.org/10.3390/en14133881.
  • [19] Soltani, M., Ronsmans, J., Jaguemont, J., Mierlo, J.V., Bossche, P.V., Omar, N. (2019). A Three-dimensional thermal model for a commercial lithium-ion capacitor battery pack with non-uniform temperature distribution. 2019 IEEE International Conference on Industrial Technology (ICIT), 1126-1131. 10.1109/ICIT.2019.8755081.
  • [20] Behi, H., Karimi, D., Behi, M., Ghanbarpour, M., Jaguemont, J., Sokkeh, M.A., Gandoman, F.H., Berecibar, M., Mierlo, J.V. (2020). A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Applied Thermal Engineering, 174: 1-14. https://doi.org/10.1016/j.applthermaleng.2020.115280.
  • [21] Behi, H., Behi, M., Karimi, D., Jaguemont, J., Ghanbarpour, M., Behnia, M., Berecibar, M., Mierlo, J.V. (2021). Heat pipe air-cooled thermal management system for lithium-ion batteries: High power applications. Applied Thermal Engineering, 183: 1-13. https://doi.org/10.1016/j.applthermaleng.2020.116240.
  • [22] Al-Zareer, M., Dinçer, I., Rosen, M.A. (2017). Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles. Electrochimica Acta, 247: 171-182. http://dx.doi.org/10.1016/j.electacta.2017.06.162.
  • [23] Monika, K., Chakraborty, C., Roy, S., Dinda, S., Singh. S.A., Datta. S.P. (2021). An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles. Journal of Energy Storage, 35: 1-15. https://doi.org/10.1016/j.est.2021.102301
  • [24] Lu, M., Zhang, X., Ji, J., Xu, X., Zhang, Y. (2020). Research progress on power battery cooling technology for electric vehicles. J. Energy Storage, 27: https://doi.org/10.1016/J.EST.2019.101155.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Haluk Güneş 0000-0002-0915-0924

Publication Date September 30, 2023
Published in Issue Year 2023 Volume: 19 Issue: 3

Cite

APA Güneş, H. (2023). Modeling of the Cooling of the Batteries of Electric Vehicles Using the Cabin Air Conditioning System. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 19(3), 205-210. https://doi.org/10.18466/cbayarfbe.1247445
AMA Güneş H. Modeling of the Cooling of the Batteries of Electric Vehicles Using the Cabin Air Conditioning System. CBUJOS. September 2023;19(3):205-210. doi:10.18466/cbayarfbe.1247445
Chicago Güneş, Haluk. “Modeling of the Cooling of the Batteries of Electric Vehicles Using the Cabin Air Conditioning System”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 19, no. 3 (September 2023): 205-10. https://doi.org/10.18466/cbayarfbe.1247445.
EndNote Güneş H (September 1, 2023) Modeling of the Cooling of the Batteries of Electric Vehicles Using the Cabin Air Conditioning System. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 19 3 205–210.
IEEE H. Güneş, “Modeling of the Cooling of the Batteries of Electric Vehicles Using the Cabin Air Conditioning System”, CBUJOS, vol. 19, no. 3, pp. 205–210, 2023, doi: 10.18466/cbayarfbe.1247445.
ISNAD Güneş, Haluk. “Modeling of the Cooling of the Batteries of Electric Vehicles Using the Cabin Air Conditioning System”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 19/3 (September 2023), 205-210. https://doi.org/10.18466/cbayarfbe.1247445.
JAMA Güneş H. Modeling of the Cooling of the Batteries of Electric Vehicles Using the Cabin Air Conditioning System. CBUJOS. 2023;19:205–210.
MLA Güneş, Haluk. “Modeling of the Cooling of the Batteries of Electric Vehicles Using the Cabin Air Conditioning System”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 19, no. 3, 2023, pp. 205-10, doi:10.18466/cbayarfbe.1247445.
Vancouver Güneş H. Modeling of the Cooling of the Batteries of Electric Vehicles Using the Cabin Air Conditioning System. CBUJOS. 2023;19(3):205-10.