Research Article
BibTex RIS Cite
Year 2023, Volume: 19 Issue: 4, 333 - 341, 29.12.2023
https://doi.org/10.18466/cbayarfbe.1336250

Abstract

References

  • [1]. Sekhoacha, M., Riet, K., Motloung, P., Gumenku, L., Adegoke, A., & Mashele, S. (2022). Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules (Basel, Switzerland), 27(17), 5730. https://doi.org/10.3390/molecules27175730
  • [2]. Dastjerd, N. T., Valibeik, A., Rahimi Monfared, S., Goodarzi, G., Moradi Sarabi, M., Hajabdollahi, F., Maniati, M., Amri, J., & Samavarchi Tehrani, S. (2022). Gene therapy: A promising approach for breast cancer treatment. Cell biochemistry and function, 40(1), 28–48. https://doi.org/10.1002/cbf.3676
  • [3]. Xue, J., Chen, K., Hu, H., & Gopinath, S. C. B. (2022). Progress in gene therapy treatments for prostate cancer. Biotechnology and applied biochemistry, 69(3), 1166–1175. https://doi.org/10.1002/bab.2193
  • [4]. Oztatlici, H., Oztatlici, M., Daglı, S. N., & Karadeniz Saygili, S. (2022). Bir sefalosporin olan sefepim, nb2a nöroblastoma hücrelerinde apoptozu ve oksidatif stresi indükler. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 9(21), 79–86. https://doi.org/10.38065/euroasiaorg.962
  • [5]. Achard, V., Putora, P. M., Omlin, A., Zilli, T., & Fischer, S. (2022). Metastatic Prostate Cancer: Treatment Options. Oncology, 100(1), 48–59. https://doi.org/10.1159/000519861
  • [6]. Huang, J., Zhuang, C., Chen, J., Chen, X., Li, X., Zhang, T., Wang, B., Feng, Q., Zheng, X., Gong, M., Gong, Q., Xiao, K., Luo, K., & Li, W. (2022). Targeted Drug/Gene/Photodynamic Therapy via a Stimuli-Responsive Dendritic-Polymer-Based Nanococktail for Treatment of EGFR-TKI-Resistant Non-Small-Cell Lung Cancer. Advanced materials (Deerfield Beach, Fla.), 34(27), e2201516. https://doi.org/10.1002/adma.202201516
  • [7]. Lundstrom K. (2003). Latest development in viral vectors for gene therapy. Trends in biotechnology, 21(3), 117–122. https://doi.org/10.1016/S0167-7799(02)00042-2
  • [8]. Chen, M., Mao, A., Xu, M., Weng, Q., Mao, J., & Ji, J. (2019). CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer letters, 447, 48–55. https://doi.org/10.1016/j.canlet.2019.01.017
  • [9]. Sun, W., Shi, Q., Zhang, H., Yang, K., Ke, Y., Wang, Y., & Qiao, L. (2019). Advances in the techniques and methodologies of cancer gene therapy. Discovery medicine, 27(146), 45–55.
  • [10]. Strecker, M. I., Wlotzka, K., Strassheimer, F., Roller, B., Ludmirski, G., König, S., Röder, J., Opitz, C., Alekseeva, T., Reul, J., Sevenich, L., Tonn, T., Wels, W. S., Steinbach, J. P., Buchholz, C. J., & Burger, M. C. (2022). AAV-mediated gene transfer of a checkpoint inhibitor in combination with HER2-targeted CAR-NK cells as experimental therapy for glioblastoma. Oncoimmunology, 11(1), 2127508. https://doi.org/10.1080/2162402X.2022.2127508
  • [11]. Mulcrone, P. L., Zhang, J., Pride, P. M., Lam, A. K., Frabutt, D. A., Ball-Kell, S. M., & Xiao, W. (2022). Genomic Designs of rAAVs Contribute to Pathological Changes in the Livers and Spleens of Mice. Advances in cell and gene therapy, 2022, 6807904. https://doi.org/10.1155/2022/6807904
  • [12]. Banskota, S., Raguram, A., Suh, S., Du, S. W., Davis, J. R., Choi, E. H., Wang, X., Nielsen, S. C., Newby, G. A., Randolph, P. B., Osborn, M. J., Musunuru, K., Palczewski, K., & Liu, D. R. (2022). Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell, 185(2), 250–265.e16. https://doi.org/10.1016/j.cell.2021.12.021
  • [13]. Pillay, S., Meyer, N. L., Puschnik, A. S., Davulcu, O., Diep, J., Ishikawa, Y., Jae, L. T., Wosen, J. E., Nagamine, C. M., Chapman, M. S., & Carette, J. E. (2016). An essential receptor for adeno-associated virus infection. Nature, 530(7588), 108–112. https://doi.org/10.1038/nature16465
  • [14]. Pupo, A., Fernández, A., Low, S. H., François, A., Suárez-Amarán, L., & Samulski, R. J. (2022). AAV vectors: The Rubik's cube of human gene therapy. Molecular therapy : the journal of the American Society of Gene Therapy, 30(12), 3515–3541. https://doi.org/10.1016/j.ymthe.2022.09.015
  • [15]. Rode, L., Bär, C., Groß, S., Rossi, A., Meumann, N., Viereck, J., Abbas, N., Xiao, K., Riedel, I., Gietz, A., Zimmer, K., Odenthal, M., Büning, H., & Thum, T. (2022). AAV capsid engineering identified two novel variants with improved in vivo tropism for cardiomyocytes. Molecular therapy : the journal of the American Society of Gene Therapy, 30(12), 3601–3618. https://doi.org/10.1016/j.ymthe.2022.07.003
  • [16]. Zincarelli, C., Soltys, S., Rengo, G., & Rabinowitz, J. E. (2008). Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Molecular therapy : the journal of the American Society of Gene Therapy, 16(6), 1073–1080. https://doi.org/10.1038/mt.2008.76
  • [17]. Tabebordbar, M., Lagerborg, K. A., Stanton, A., King, E. M., Ye, S., Tellez, L., Krunnfusz, A., Tavakoli, S., Widrick, J. J., Messemer, K. A., Troiano, E. C., Moghadaszadeh, B., Peacker, B. L., Leacock, K. A., Horwitz, N., Beggs, A. H., Wagers, A. J., & Sabeti, P. C. (2021). Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell, 184(19), 4919–4938.e22. https://doi.org/10.1016/j.cell.2021.08.028
  • [18]. Tan, F., Chu, C., Qi, J., Li, W., You, D., Li, K., Chen, X., Zhao, W., Cheng, C., Liu, X., Qiao, Y., Su, B., He, S., Zhong, C., Li, H., Chai, R., & Zhong, G. (2019). AAV-ie enables safe and efficient gene transfer to inner ear cells. Nature communications, 10(1), 3733. https://doi.org/10.1038/s41467-019-11687-8
  • [19]. Grieger, J. C., & Samulski, R. J. (2005). Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications. Advances in biochemical engineering/biotechnology, 99, 119–145.
  • [20]. Verdera, H. C., Kuranda, K., & Mingozzi, F. (2020). AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Molecular therapy : the journal of the American Society of Gene Therapy, 28(3), 723–746. https://doi.org/10.1016/j.ymthe.2019.12.010
  • [21]. Choi, V. W., McCarty, D. M., & Samulski, R. J. (2005). AAV hybrid serotypes: improved vectors for gene delivery. Current gene therapy, 5(3), 299–310. https://doi.org/10.2174/1566523054064968
  • [22]. Kochergin-Nikitsky, K., Belova, L., Lavrov, A., & Smirnikhina, S. (2021). Tissue and cell-type-specific transduction using rAAV vectors in lung diseases. Journal of molecular medicine (Berlin, Germany), 99(8), 1057–1071. https://doi.org/10.1007/s00109-021-02086-y
  • [23]. Mietzsch, M., Jose, A., Chipman, P., Bhattacharya, N., Daneshparvar, N., McKenna, R., & Agbandje-McKenna, M. (2021). Completion of the AAV Structural Atlas: Serotype Capsid Structures Reveals Clade-Specific Features. Viruses, 13(1), 101. https://doi.org/10.3390/v13010101
  • [24]. Gray, S. J., Choi, V. W., Asokan, A., Haberman, R. A., McCown, T. J., & Samulski, R. J. (2011). Production of recombinant adeno-associated viral vectors and use in in vitro and in vivo administration. Current protocols in neuroscience, Chapter 4, Unit4.17–4.17. https://doi.org/10.1002/0471142301.ns0417s57
  • [25]. Liu, Y., Kim, Y. J., Ji, M., Fang, J., Siriwon, N., Zhang, L. I., & Wang, P. (2014). Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides. Molecular therapy. Methods & clinical development, 1, 12. https://doi.org/10.1038/mtm.2013.12
  • [26]. Yao, S., Rong, W., & Yuan, Y. (2023). Optimization of adeno-associated virus (AAV) gene delivery into human bone marrow stem cells (hBMSCs). Stem cell investigation, 10, 3. https://doi.org/10.21037/sci-2022-042
  • [27]. Zheng, Z., Ye, J., Leng, M., Gan, C., Tang, N., Li, W., Valencia, C. A., Dong, B., & Chow, H. Y. (2023). Enhanced sensitivity of neutralizing antibody detection for different AAV serotypes using HeLa cells with overexpressed AAVR. Frontiers in pharmacology, 14, 1188290. https://doi.org/10.3389/fphar.2023.1188290
  • [28]. Aurnhammer, C., Haase, M., Muether, N., Hausl, M., Rauschhuber, C., Huber, I., Nitschko, H., Busch, U., Sing, A., Ehrhardt, A., & Baiker, A. (2012). Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Human gene therapy methods, 23(1), 18–28. https://doi.org/10.1089/hgtb.2011.034
  • [29]. Muraine, L., Bensalah, M., Dhiab, J., Cordova, G., Arandel, L., Marhic, A., Chapart, M., Vasseur, S., Benkhelifa-Ziyyat, S., Bigot, A., Butler-Browne, G., Mouly, V., Negroni, E., & Trollet, C. (2020). Transduction Efficiency of Adeno-Associated Virus Serotypes After Local Injection in Mouse and Human Skeletal Muscle. Human gene therapy, 31(3-4), 233–240. https://doi.org/10.1089/hum.2019.173
  • [30]. Berns, K. I., & Srivastava, A. (2019). Next Generation of Adeno-Associated Virus Vectors for Gene Therapy for Human Liver Diseases. Gastroenterology clinics of North America, 48(2), 319–330. https://doi.org/10.1016/j.gtc.2019.02.005
  • [31]. Zengel, J., & Carette, J. E. (2020). Structural and cellular biology of adeno-associated virus attachment and entry. Advances in virus research, 106, 39–84. https://doi.org/10.1016/bs.aivir.2020.01.002
  • [32]. Chow, R. D., Guzman, C. D., Wang, G., Schmidt, F., Youngblood, M. W., Ye, L., Errami, Y., Dong, M. B., Martinez, M. A., Zhang, S., Renauer, P., Bilguvar, K., Gunel, M., Sharp, P. A., Zhang, F., Platt, R. J., & Chen, S. (2017). AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nature neuroscience, 20(10), 1329–1341. https://doi.org/10.1038/nn.4620
  • [33]. Hung, S. S., Chrysostomou, V., Li, F., Lim, J. K., Wang, J. H., Powell, J. E., Tu, L., Daniszewski, M., Lo, C., Wong, R. C., Crowston, J. G., Pébay, A., King, A. E., Bui, B. V., Liu, G. S., & Hewitt, A. W. (2016). AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo. Investigative ophthalmology & visual science, 57(7), 3470–3476. https://doi.org/10.1167/iovs.16-19316
  • [34]. Miller, D. G., Petek, L. M., & Russell, D. W. (2003). Human gene targeting by adeno-associated virus vectors is enhanced by DNA double-strand breaks. Molecular and cellular biology, 23(10), 3550–3557. https://doi.org/10.1128/MCB.23.10.3550-3557.2003
  • [35]. Batır, M. B., Şahin, E., & Çam, F. S. (2019). Evaluation of the CRISPR/Cas9 directed mutant TP53 gene repairing effect in human prostate cancer cell line PC-3. Molecular biology reports, 46(6), 6471–6484. https://doi.org/10.1007/s11033-019-05093-y
  • [36]. Ernst, M. P. T., Broeders, M., Herrero-Hernandez, P., Oussoren, E., van der Ploeg, A. T., & Pijnappel, W. W. M. P. (2020). Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Molecular therapy. Methods & clinical development, 18, 532–557. https://doi.org/10.1016/j.omtm.2020.06.022
  • [37]. Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: a review of the challenges and approaches. Drug delivery, 25(1), 1234–1257. https://doi.org/10.1080/10717544.2018.1474964
  • [38]. Maestro, S., Weber, N. D., Zabaleta, N., Aldabe, R., & Gonzalez-Aseguinolaza, G. (2021). Novel vectors and approaches for gene therapy in liver diseases. JHEP reports : innovation in hepatology, 3(4), 100300. https://doi.org/10.1016/j.jhepr.2021.100300
  • [39]. Chen, C., Akerstrom, V., Baus, J., Lan, M. S., & Breslin, M. B. (2013). Comparative analysis of the transduction efficiency of five adeno associated virus serotypes and VSV-G pseudotype lentiviral vector in lung cancer cells. Virology journal, 10, 86. https://doi.org/10.1186/1743-422X-10-86
  • [40]. Alves, S., Bode, J., Bemelmans, A. P., von Kalle, C., Cartier, N., & Tews, B. (2016). Ultramicroscopy as a novel tool to unravel the tropism of AAV gene therapy vectors in the brain. Scientific reports, 6, 28272. https://doi.org/10.1038/srep28272
  • [41]. Chen, X., He, Y., Tian, Y., Wang, Y., Wu, Z., Lan, T., Wang, H., Cheng, K., & Xie, P. (2020). Different Serotypes of Adeno-Associated Virus Vector- and Lentivirus-Mediated Tropism in Choroid Plexus by Intracerebroventricular Delivery. Human gene therapy, 31(7-8), 440–447. https://doi.org/10.1089/hum.2019.300 [42]. Korneyenkov, M. A., & Zamyatnin, A. A., Jr (2021). Next Step in Gene Delivery: Modern Approaches and Further Perspectives of AAV Tropism Modification. Pharmaceutics, 13(5), 750. https://doi.org/10.3390/pharmaceutics13050750
  • [43]. Van Vliet, K. M., Blouin, V., Brument, N., Agbandje-McKenna, M., & Snyder, R. O. (2008). The role of the adeno-associated virus capsid in gene transfer. Methods in molecular biology (Clifton, N.J.), 437, 51–91. https://doi.org/10.1007/978-1-59745-210-6_2
  • [44]. Wu, Z., Asokan, A., & Samulski, R. J. (2006). Adeno-associated virus serotypes: vector toolkit for human gene therapy. Molecular therapy : the journal of the American Society of Gene Therapy, 14(3), 316–327. https://doi.org/10.1016/j.ymthe.2006.05.009

Recombinant Adeno-Associated Viral Vector Transduction of Human Prostate Cancer Cell Lines

Year 2023, Volume: 19 Issue: 4, 333 - 341, 29.12.2023
https://doi.org/10.18466/cbayarfbe.1336250

Abstract

Abstract: At the core of gene therapy lies the use of viral vectors, engineered viruses serving as delivery vehicles to transport restorative genes into target cells. Therefore, the effect of 7 different rAAV serotypes and their different quantites was analysis here on human prostate cancer cell lines PC-3 and DU-145, which are hard to be transfected. PC-3 and DU-145 cell lines were infected with different multiplicity of infection (MOI) ratios of 7 rAAV serotypes, AAV 2/1, 2/2, 2/3, 2/5, 2/6, and 2/9, which were expressing the green fluorescent protein (GFP) transgene driven by the CMV promoter. The transduction efficiency was analyzed by fluorescent microscopy and flow cytometry. In addition, the cell viability of the infected cells was measured by Muse Cell Analyzer at the MOI of 10.000. rAAV 2/2 and rAAV 2/6 have the most significant ability to transduce PC-3 cells. Although rAAV 2/2 and rAAV 2/6 were also the most transducing serotypes in the DU-145 cell line, the transduction rates did not exceed 20% in this cell line. On the other hand, after viral infection, no difference in cell viability was observed in PC-3 cells compared to the mock group, while a significant decrease in viability was observed in DU-145 cells. This study determined the transduction efficiency of 7 different rAAV serotypes on human cancer cell lines. While rAAV 2/2 and rAAV 2/6 serotypes achieved more than 60% transduction efficiency in PC-3 cells, the transduction efficiency could not exceed 20% in DU-145 cells. Overall, this study demonstrated that rAAV 2/2 and rAAV 2/6 could mediate the expression of a transgene with a high transduction efficiency.

References

  • [1]. Sekhoacha, M., Riet, K., Motloung, P., Gumenku, L., Adegoke, A., & Mashele, S. (2022). Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules (Basel, Switzerland), 27(17), 5730. https://doi.org/10.3390/molecules27175730
  • [2]. Dastjerd, N. T., Valibeik, A., Rahimi Monfared, S., Goodarzi, G., Moradi Sarabi, M., Hajabdollahi, F., Maniati, M., Amri, J., & Samavarchi Tehrani, S. (2022). Gene therapy: A promising approach for breast cancer treatment. Cell biochemistry and function, 40(1), 28–48. https://doi.org/10.1002/cbf.3676
  • [3]. Xue, J., Chen, K., Hu, H., & Gopinath, S. C. B. (2022). Progress in gene therapy treatments for prostate cancer. Biotechnology and applied biochemistry, 69(3), 1166–1175. https://doi.org/10.1002/bab.2193
  • [4]. Oztatlici, H., Oztatlici, M., Daglı, S. N., & Karadeniz Saygili, S. (2022). Bir sefalosporin olan sefepim, nb2a nöroblastoma hücrelerinde apoptozu ve oksidatif stresi indükler. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 9(21), 79–86. https://doi.org/10.38065/euroasiaorg.962
  • [5]. Achard, V., Putora, P. M., Omlin, A., Zilli, T., & Fischer, S. (2022). Metastatic Prostate Cancer: Treatment Options. Oncology, 100(1), 48–59. https://doi.org/10.1159/000519861
  • [6]. Huang, J., Zhuang, C., Chen, J., Chen, X., Li, X., Zhang, T., Wang, B., Feng, Q., Zheng, X., Gong, M., Gong, Q., Xiao, K., Luo, K., & Li, W. (2022). Targeted Drug/Gene/Photodynamic Therapy via a Stimuli-Responsive Dendritic-Polymer-Based Nanococktail for Treatment of EGFR-TKI-Resistant Non-Small-Cell Lung Cancer. Advanced materials (Deerfield Beach, Fla.), 34(27), e2201516. https://doi.org/10.1002/adma.202201516
  • [7]. Lundstrom K. (2003). Latest development in viral vectors for gene therapy. Trends in biotechnology, 21(3), 117–122. https://doi.org/10.1016/S0167-7799(02)00042-2
  • [8]. Chen, M., Mao, A., Xu, M., Weng, Q., Mao, J., & Ji, J. (2019). CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer letters, 447, 48–55. https://doi.org/10.1016/j.canlet.2019.01.017
  • [9]. Sun, W., Shi, Q., Zhang, H., Yang, K., Ke, Y., Wang, Y., & Qiao, L. (2019). Advances in the techniques and methodologies of cancer gene therapy. Discovery medicine, 27(146), 45–55.
  • [10]. Strecker, M. I., Wlotzka, K., Strassheimer, F., Roller, B., Ludmirski, G., König, S., Röder, J., Opitz, C., Alekseeva, T., Reul, J., Sevenich, L., Tonn, T., Wels, W. S., Steinbach, J. P., Buchholz, C. J., & Burger, M. C. (2022). AAV-mediated gene transfer of a checkpoint inhibitor in combination with HER2-targeted CAR-NK cells as experimental therapy for glioblastoma. Oncoimmunology, 11(1), 2127508. https://doi.org/10.1080/2162402X.2022.2127508
  • [11]. Mulcrone, P. L., Zhang, J., Pride, P. M., Lam, A. K., Frabutt, D. A., Ball-Kell, S. M., & Xiao, W. (2022). Genomic Designs of rAAVs Contribute to Pathological Changes in the Livers and Spleens of Mice. Advances in cell and gene therapy, 2022, 6807904. https://doi.org/10.1155/2022/6807904
  • [12]. Banskota, S., Raguram, A., Suh, S., Du, S. W., Davis, J. R., Choi, E. H., Wang, X., Nielsen, S. C., Newby, G. A., Randolph, P. B., Osborn, M. J., Musunuru, K., Palczewski, K., & Liu, D. R. (2022). Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell, 185(2), 250–265.e16. https://doi.org/10.1016/j.cell.2021.12.021
  • [13]. Pillay, S., Meyer, N. L., Puschnik, A. S., Davulcu, O., Diep, J., Ishikawa, Y., Jae, L. T., Wosen, J. E., Nagamine, C. M., Chapman, M. S., & Carette, J. E. (2016). An essential receptor for adeno-associated virus infection. Nature, 530(7588), 108–112. https://doi.org/10.1038/nature16465
  • [14]. Pupo, A., Fernández, A., Low, S. H., François, A., Suárez-Amarán, L., & Samulski, R. J. (2022). AAV vectors: The Rubik's cube of human gene therapy. Molecular therapy : the journal of the American Society of Gene Therapy, 30(12), 3515–3541. https://doi.org/10.1016/j.ymthe.2022.09.015
  • [15]. Rode, L., Bär, C., Groß, S., Rossi, A., Meumann, N., Viereck, J., Abbas, N., Xiao, K., Riedel, I., Gietz, A., Zimmer, K., Odenthal, M., Büning, H., & Thum, T. (2022). AAV capsid engineering identified two novel variants with improved in vivo tropism for cardiomyocytes. Molecular therapy : the journal of the American Society of Gene Therapy, 30(12), 3601–3618. https://doi.org/10.1016/j.ymthe.2022.07.003
  • [16]. Zincarelli, C., Soltys, S., Rengo, G., & Rabinowitz, J. E. (2008). Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Molecular therapy : the journal of the American Society of Gene Therapy, 16(6), 1073–1080. https://doi.org/10.1038/mt.2008.76
  • [17]. Tabebordbar, M., Lagerborg, K. A., Stanton, A., King, E. M., Ye, S., Tellez, L., Krunnfusz, A., Tavakoli, S., Widrick, J. J., Messemer, K. A., Troiano, E. C., Moghadaszadeh, B., Peacker, B. L., Leacock, K. A., Horwitz, N., Beggs, A. H., Wagers, A. J., & Sabeti, P. C. (2021). Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell, 184(19), 4919–4938.e22. https://doi.org/10.1016/j.cell.2021.08.028
  • [18]. Tan, F., Chu, C., Qi, J., Li, W., You, D., Li, K., Chen, X., Zhao, W., Cheng, C., Liu, X., Qiao, Y., Su, B., He, S., Zhong, C., Li, H., Chai, R., & Zhong, G. (2019). AAV-ie enables safe and efficient gene transfer to inner ear cells. Nature communications, 10(1), 3733. https://doi.org/10.1038/s41467-019-11687-8
  • [19]. Grieger, J. C., & Samulski, R. J. (2005). Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications. Advances in biochemical engineering/biotechnology, 99, 119–145.
  • [20]. Verdera, H. C., Kuranda, K., & Mingozzi, F. (2020). AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Molecular therapy : the journal of the American Society of Gene Therapy, 28(3), 723–746. https://doi.org/10.1016/j.ymthe.2019.12.010
  • [21]. Choi, V. W., McCarty, D. M., & Samulski, R. J. (2005). AAV hybrid serotypes: improved vectors for gene delivery. Current gene therapy, 5(3), 299–310. https://doi.org/10.2174/1566523054064968
  • [22]. Kochergin-Nikitsky, K., Belova, L., Lavrov, A., & Smirnikhina, S. (2021). Tissue and cell-type-specific transduction using rAAV vectors in lung diseases. Journal of molecular medicine (Berlin, Germany), 99(8), 1057–1071. https://doi.org/10.1007/s00109-021-02086-y
  • [23]. Mietzsch, M., Jose, A., Chipman, P., Bhattacharya, N., Daneshparvar, N., McKenna, R., & Agbandje-McKenna, M. (2021). Completion of the AAV Structural Atlas: Serotype Capsid Structures Reveals Clade-Specific Features. Viruses, 13(1), 101. https://doi.org/10.3390/v13010101
  • [24]. Gray, S. J., Choi, V. W., Asokan, A., Haberman, R. A., McCown, T. J., & Samulski, R. J. (2011). Production of recombinant adeno-associated viral vectors and use in in vitro and in vivo administration. Current protocols in neuroscience, Chapter 4, Unit4.17–4.17. https://doi.org/10.1002/0471142301.ns0417s57
  • [25]. Liu, Y., Kim, Y. J., Ji, M., Fang, J., Siriwon, N., Zhang, L. I., & Wang, P. (2014). Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides. Molecular therapy. Methods & clinical development, 1, 12. https://doi.org/10.1038/mtm.2013.12
  • [26]. Yao, S., Rong, W., & Yuan, Y. (2023). Optimization of adeno-associated virus (AAV) gene delivery into human bone marrow stem cells (hBMSCs). Stem cell investigation, 10, 3. https://doi.org/10.21037/sci-2022-042
  • [27]. Zheng, Z., Ye, J., Leng, M., Gan, C., Tang, N., Li, W., Valencia, C. A., Dong, B., & Chow, H. Y. (2023). Enhanced sensitivity of neutralizing antibody detection for different AAV serotypes using HeLa cells with overexpressed AAVR. Frontiers in pharmacology, 14, 1188290. https://doi.org/10.3389/fphar.2023.1188290
  • [28]. Aurnhammer, C., Haase, M., Muether, N., Hausl, M., Rauschhuber, C., Huber, I., Nitschko, H., Busch, U., Sing, A., Ehrhardt, A., & Baiker, A. (2012). Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Human gene therapy methods, 23(1), 18–28. https://doi.org/10.1089/hgtb.2011.034
  • [29]. Muraine, L., Bensalah, M., Dhiab, J., Cordova, G., Arandel, L., Marhic, A., Chapart, M., Vasseur, S., Benkhelifa-Ziyyat, S., Bigot, A., Butler-Browne, G., Mouly, V., Negroni, E., & Trollet, C. (2020). Transduction Efficiency of Adeno-Associated Virus Serotypes After Local Injection in Mouse and Human Skeletal Muscle. Human gene therapy, 31(3-4), 233–240. https://doi.org/10.1089/hum.2019.173
  • [30]. Berns, K. I., & Srivastava, A. (2019). Next Generation of Adeno-Associated Virus Vectors for Gene Therapy for Human Liver Diseases. Gastroenterology clinics of North America, 48(2), 319–330. https://doi.org/10.1016/j.gtc.2019.02.005
  • [31]. Zengel, J., & Carette, J. E. (2020). Structural and cellular biology of adeno-associated virus attachment and entry. Advances in virus research, 106, 39–84. https://doi.org/10.1016/bs.aivir.2020.01.002
  • [32]. Chow, R. D., Guzman, C. D., Wang, G., Schmidt, F., Youngblood, M. W., Ye, L., Errami, Y., Dong, M. B., Martinez, M. A., Zhang, S., Renauer, P., Bilguvar, K., Gunel, M., Sharp, P. A., Zhang, F., Platt, R. J., & Chen, S. (2017). AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nature neuroscience, 20(10), 1329–1341. https://doi.org/10.1038/nn.4620
  • [33]. Hung, S. S., Chrysostomou, V., Li, F., Lim, J. K., Wang, J. H., Powell, J. E., Tu, L., Daniszewski, M., Lo, C., Wong, R. C., Crowston, J. G., Pébay, A., King, A. E., Bui, B. V., Liu, G. S., & Hewitt, A. W. (2016). AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo. Investigative ophthalmology & visual science, 57(7), 3470–3476. https://doi.org/10.1167/iovs.16-19316
  • [34]. Miller, D. G., Petek, L. M., & Russell, D. W. (2003). Human gene targeting by adeno-associated virus vectors is enhanced by DNA double-strand breaks. Molecular and cellular biology, 23(10), 3550–3557. https://doi.org/10.1128/MCB.23.10.3550-3557.2003
  • [35]. Batır, M. B., Şahin, E., & Çam, F. S. (2019). Evaluation of the CRISPR/Cas9 directed mutant TP53 gene repairing effect in human prostate cancer cell line PC-3. Molecular biology reports, 46(6), 6471–6484. https://doi.org/10.1007/s11033-019-05093-y
  • [36]. Ernst, M. P. T., Broeders, M., Herrero-Hernandez, P., Oussoren, E., van der Ploeg, A. T., & Pijnappel, W. W. M. P. (2020). Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Molecular therapy. Methods & clinical development, 18, 532–557. https://doi.org/10.1016/j.omtm.2020.06.022
  • [37]. Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: a review of the challenges and approaches. Drug delivery, 25(1), 1234–1257. https://doi.org/10.1080/10717544.2018.1474964
  • [38]. Maestro, S., Weber, N. D., Zabaleta, N., Aldabe, R., & Gonzalez-Aseguinolaza, G. (2021). Novel vectors and approaches for gene therapy in liver diseases. JHEP reports : innovation in hepatology, 3(4), 100300. https://doi.org/10.1016/j.jhepr.2021.100300
  • [39]. Chen, C., Akerstrom, V., Baus, J., Lan, M. S., & Breslin, M. B. (2013). Comparative analysis of the transduction efficiency of five adeno associated virus serotypes and VSV-G pseudotype lentiviral vector in lung cancer cells. Virology journal, 10, 86. https://doi.org/10.1186/1743-422X-10-86
  • [40]. Alves, S., Bode, J., Bemelmans, A. P., von Kalle, C., Cartier, N., & Tews, B. (2016). Ultramicroscopy as a novel tool to unravel the tropism of AAV gene therapy vectors in the brain. Scientific reports, 6, 28272. https://doi.org/10.1038/srep28272
  • [41]. Chen, X., He, Y., Tian, Y., Wang, Y., Wu, Z., Lan, T., Wang, H., Cheng, K., & Xie, P. (2020). Different Serotypes of Adeno-Associated Virus Vector- and Lentivirus-Mediated Tropism in Choroid Plexus by Intracerebroventricular Delivery. Human gene therapy, 31(7-8), 440–447. https://doi.org/10.1089/hum.2019.300 [42]. Korneyenkov, M. A., & Zamyatnin, A. A., Jr (2021). Next Step in Gene Delivery: Modern Approaches and Further Perspectives of AAV Tropism Modification. Pharmaceutics, 13(5), 750. https://doi.org/10.3390/pharmaceutics13050750
  • [43]. Van Vliet, K. M., Blouin, V., Brument, N., Agbandje-McKenna, M., & Snyder, R. O. (2008). The role of the adeno-associated virus capsid in gene transfer. Methods in molecular biology (Clifton, N.J.), 437, 51–91. https://doi.org/10.1007/978-1-59745-210-6_2
  • [44]. Wu, Z., Asokan, A., & Samulski, R. J. (2006). Adeno-associated virus serotypes: vector toolkit for human gene therapy. Molecular therapy : the journal of the American Society of Gene Therapy, 14(3), 316–327. https://doi.org/10.1016/j.ymthe.2006.05.009
There are 43 citations in total.

Details

Primary Language English
Subjects Solution Chemistry
Journal Section Articles
Authors

Muhammet Burak Batir 0000-0002-8722-5055

Publication Date December 29, 2023
Published in Issue Year 2023 Volume: 19 Issue: 4

Cite

APA Batir, M. B. (2023). Recombinant Adeno-Associated Viral Vector Transduction of Human Prostate Cancer Cell Lines. Celal Bayar University Journal of Science, 19(4), 333-341. https://doi.org/10.18466/cbayarfbe.1336250
AMA Batir MB. Recombinant Adeno-Associated Viral Vector Transduction of Human Prostate Cancer Cell Lines. CBUJOS. December 2023;19(4):333-341. doi:10.18466/cbayarfbe.1336250
Chicago Batir, Muhammet Burak. “Recombinant Adeno-Associated Viral Vector Transduction of Human Prostate Cancer Cell Lines”. Celal Bayar University Journal of Science 19, no. 4 (December 2023): 333-41. https://doi.org/10.18466/cbayarfbe.1336250.
EndNote Batir MB (December 1, 2023) Recombinant Adeno-Associated Viral Vector Transduction of Human Prostate Cancer Cell Lines. Celal Bayar University Journal of Science 19 4 333–341.
IEEE M. B. Batir, “Recombinant Adeno-Associated Viral Vector Transduction of Human Prostate Cancer Cell Lines”, CBUJOS, vol. 19, no. 4, pp. 333–341, 2023, doi: 10.18466/cbayarfbe.1336250.
ISNAD Batir, Muhammet Burak. “Recombinant Adeno-Associated Viral Vector Transduction of Human Prostate Cancer Cell Lines”. Celal Bayar University Journal of Science 19/4 (December 2023), 333-341. https://doi.org/10.18466/cbayarfbe.1336250.
JAMA Batir MB. Recombinant Adeno-Associated Viral Vector Transduction of Human Prostate Cancer Cell Lines. CBUJOS. 2023;19:333–341.
MLA Batir, Muhammet Burak. “Recombinant Adeno-Associated Viral Vector Transduction of Human Prostate Cancer Cell Lines”. Celal Bayar University Journal of Science, vol. 19, no. 4, 2023, pp. 333-41, doi:10.18466/cbayarfbe.1336250.
Vancouver Batir MB. Recombinant Adeno-Associated Viral Vector Transduction of Human Prostate Cancer Cell Lines. CBUJOS. 2023;19(4):333-41.