Research Article
BibTex RIS Cite
Year 2024, Volume: 20 Issue: 2, 61 - 66, 28.06.2024
https://doi.org/10.18466/cbayarfbe.1452081

Abstract

References

  • [1]. Damjanovic, D, Muralt, P, Setter, N. 2001. Ferroelectric Sensors. IEEE Sensors Journal; 1(3): 191-206.
  • [2]. Swartz, SL and Shrout, TR. 1982. Fabrication of perovskite lead magnesium niobate. Materials Research Bulletin; 17(10): 1245-1250.
  • [3]. Choi, SW, Shrout, TR., Jang, SJ, Bhalla, A.S. 1989. Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Ferroelectrics; 100: 29–38.
  • [4]. Inada, M. 1977. Analysis of the formation process of the piezoelectric PCM ceramics. National Technical Report (Matsushita Elect. Ind. Co.); 27(1): 95–102.
  • [5]. Bouquin, O, Lejeune, M, Boilot, JP. 1991. Formation of the perovskite phase in the PbMg1/3Nb2/3O3-PbTiO3 system. Journal of the American Ceramic Society; 74(5): 1152–1156.
  • [6]. Guha, JP. 1999. Reaction chemistry and subsolidus phase equilibria in lead-based relaxor systems: Part I - Formation and stability of the perovskite and pyrochlore compounds in the system PbO-MgO-Nb2O5. Journal of Materials Science; 34(20): 4985–4994.
  • [7]. Shrout, TR, Swartz, SL. 1983. Dielectric-properties of pyrochlore lead magnesium niobate. Materials Research Bulletin; 18(6): 663-667.
  • [8]. Wakiya, N, Saiki, A, Ishizawa, N, Shinozaki, K, Mizutani, N. 1993. Crystal-growth, crystal-structure and chemical-composition of a pyrochlore type compound in lead-magnesium-niobium-oxygen system. Materials Research Bulletin; 28(2): 137-143.
  • [9]. Wakiya, N, Kim, B.H, Shinozaki, K, Mizutani, N. 1994. Composition range of cubic pyrochlore type compound in lead magnesium niobium oxygen system. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi-Journal of the Ceramic Society of Japan; 102(6); 612-615.
  • [10]. Takahashi, S, Sasaki, Y, Kawai, H, Hirose, S. 1996. High-power piezoelectric characteristics in Pb(Mn1/3Sb2/3)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 solid solution system. Isaf '96 - Proceedings of the Tenth Ieee International Symposium on Applications of Ferroelectric; 1: 2309-2312.
  • [11]. Takahashi, S, Yamamoto, M, Sasaki, Y. 1998. Nonlinear piezoelectric effect in ferroelectric ceramics. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers; 37(9B): 5292-5296.
  • [12]. Aydın HS., 2016. Production and Characterization of PMN-PT [Pb(Mg1/3Nb2/3)O3-PbTiO3] Based Piezoelectric Ceramics (in Turkish), MSc Thesis (Advisor: Kalem, V.), Selçuk University, Graduate School of Natural And Applied Science, Konya.
  • [13]. Düzen, O, Kalem, V. 2017. Optimizing Structural and Electrical Properties of PMN-PT-PMS Ceramics via Sintering Temperature, Selcuk University Journal of Engineering, Science and Technology; 5(2): 144-152.
  • [14]. Mahdi, RI, Al-Bahnam, NJ, Abbo, AI, Hmood, JK, Majid, WH Abd. 2016. Optimization of sintering temperature for the enhancement of pyroelectric properties of lead-free 0.88(Na0.5Bi0.5)TiO3-0.084(K0.5Bi0.5)TiO3-0.036BaTiO3 piezoelectric ceramics. Journal of Alloys and Compounds; 688: 77-87.
  • [15]. Zhu, R, Yin, Y, Fang, B, Chen, Z, Zhang, S, Ding, J, Zhao, X, Luo, H. 2016. Optimizing structure and electrical properties of high-Curie temperature PMN-PHT piezoelectric ceramics via tailoring sintering process. The European Physical Journal-Applied Physics; 74(3): 30101.
  • [16]. Liu, L, Fan, H, Ke, S, Chen, X. 2008. Effect of sintering temperature on the structure and properties of cerium-doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 piezoelectric ceramics. Journal of Alloys and Compounds; 458: 504-508.
  • [17]. Naceur, H, Megriche, A, El Maaoui, M. 2014. Effect of sintering temperature on microstructure and electrical properties of Sr1-x(Na0.5Bi0.5)xBi2Nb2O9 solid solutions. Journal of Advanced Ceramics; 3(1): 17-30.
  • [18]. Ketsuwan, P, Ngamjarurojana, A, Laosiritaworn, Y, Ananta, S, Yimnirun, R. 2007. Effect of Sintering Temperature on Phase Formation, Dielectric, Piezoelectric, and Ferroelectric Properties of Nb-Doped Pb(Zr0.52Ti0.48)O3 Ceramics. Ferroelectrics; 358: 35-41.
  • [19]. Wang, CH, Chang, SJ, Chang, PC. 2004. Effect of sintering conditions on characteristics of PbTiO3–PbZrO3–Pb(Mg1/3Nb2/3)O3–Pb(Zn1/3Nb2/3)O3. Materials Science and Engineering B; 111: 124-130.
  • [20]. Lente MH, Zanin AL, Vasiljevic J, Dos Santos IA, Eiras JA, Garcia D. 2004. Temperature Coefficient of Piezoelectric Constants in Pb(Mg1/3Nb2/3)O3-PbTiO3 Ceramics. Materials Research; 7(2): 369-372.
  • [21]. Hoffmann, MJ., Hammer M, Endriss A, Lupascu DC. 2001. Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics. Acta Materialia; 49: 1301–1310.
  • [22]. Nadoliisky, MM., Vassileva, TK., Vitkov, PB. 1992. Dielectric, Piezoelectric and Pyroelectric Properties of PbZrO3-PbTiO3-Pb(Mn1/3Sb2/3)O3 Ferroelectric System. Ferroelectrics; 129: 141–146.

Influence of Sintering Time on Electrical Properties, Densification, and Microstructure of PMN-PT-PMS Piezoelectric Ceramics

Year 2024, Volume: 20 Issue: 2, 61 - 66, 28.06.2024
https://doi.org/10.18466/cbayarfbe.1452081

Abstract

The effect of sintering soaking time on the dielectric, piezoelectric, and structural properties of PMN-PT-PMS [Pb(Mg1/3Nb2/3)O3-PbTiO3-Pb(Mn1/3Sb2/3)O3] ceramics was systematically investigated. High density samples were prepared using solid-state sintering technique with different soaking times (60-150 min). Rhombohedral perovskite structure was the dominant phase for all soaking times, confirmed by XRD analysis. However, the pure perovskite structure could not be preserved at sintering times over 120 min. SEM micrographs indicated that homogeneous microstructures were obtained for all soaking times and the grain and pore sizes increased slightly with longer sintering time. Dielectric and piezoelectric test results showed that the optimum value of dielectric constant, electromechanical coupling factor, and piezoelectric strain coefficient was obtained for PMN-PT-PMS when sintered for 90 min. Ceramic samples with high density and perovskite structure prepared by proper sintering condition yielded high dielectric and piezoelectric response.

Ethical Statement

There are no ethical issues after the publication of this manuscript.

Thanks

This study was derived from the M.Sc. thesis titled "Determination of Optimal Sintering Regime for PMN-PT-PMS [Pb(Mg,Nb)O3-PbTiO3-Pb(Mn,Sb)O3] Piezoelectric Ceramics" prepared by Osman Düzen under the supervision of Prof. Dr. Volkan Kalem.

References

  • [1]. Damjanovic, D, Muralt, P, Setter, N. 2001. Ferroelectric Sensors. IEEE Sensors Journal; 1(3): 191-206.
  • [2]. Swartz, SL and Shrout, TR. 1982. Fabrication of perovskite lead magnesium niobate. Materials Research Bulletin; 17(10): 1245-1250.
  • [3]. Choi, SW, Shrout, TR., Jang, SJ, Bhalla, A.S. 1989. Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Ferroelectrics; 100: 29–38.
  • [4]. Inada, M. 1977. Analysis of the formation process of the piezoelectric PCM ceramics. National Technical Report (Matsushita Elect. Ind. Co.); 27(1): 95–102.
  • [5]. Bouquin, O, Lejeune, M, Boilot, JP. 1991. Formation of the perovskite phase in the PbMg1/3Nb2/3O3-PbTiO3 system. Journal of the American Ceramic Society; 74(5): 1152–1156.
  • [6]. Guha, JP. 1999. Reaction chemistry and subsolidus phase equilibria in lead-based relaxor systems: Part I - Formation and stability of the perovskite and pyrochlore compounds in the system PbO-MgO-Nb2O5. Journal of Materials Science; 34(20): 4985–4994.
  • [7]. Shrout, TR, Swartz, SL. 1983. Dielectric-properties of pyrochlore lead magnesium niobate. Materials Research Bulletin; 18(6): 663-667.
  • [8]. Wakiya, N, Saiki, A, Ishizawa, N, Shinozaki, K, Mizutani, N. 1993. Crystal-growth, crystal-structure and chemical-composition of a pyrochlore type compound in lead-magnesium-niobium-oxygen system. Materials Research Bulletin; 28(2): 137-143.
  • [9]. Wakiya, N, Kim, B.H, Shinozaki, K, Mizutani, N. 1994. Composition range of cubic pyrochlore type compound in lead magnesium niobium oxygen system. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi-Journal of the Ceramic Society of Japan; 102(6); 612-615.
  • [10]. Takahashi, S, Sasaki, Y, Kawai, H, Hirose, S. 1996. High-power piezoelectric characteristics in Pb(Mn1/3Sb2/3)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 solid solution system. Isaf '96 - Proceedings of the Tenth Ieee International Symposium on Applications of Ferroelectric; 1: 2309-2312.
  • [11]. Takahashi, S, Yamamoto, M, Sasaki, Y. 1998. Nonlinear piezoelectric effect in ferroelectric ceramics. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers; 37(9B): 5292-5296.
  • [12]. Aydın HS., 2016. Production and Characterization of PMN-PT [Pb(Mg1/3Nb2/3)O3-PbTiO3] Based Piezoelectric Ceramics (in Turkish), MSc Thesis (Advisor: Kalem, V.), Selçuk University, Graduate School of Natural And Applied Science, Konya.
  • [13]. Düzen, O, Kalem, V. 2017. Optimizing Structural and Electrical Properties of PMN-PT-PMS Ceramics via Sintering Temperature, Selcuk University Journal of Engineering, Science and Technology; 5(2): 144-152.
  • [14]. Mahdi, RI, Al-Bahnam, NJ, Abbo, AI, Hmood, JK, Majid, WH Abd. 2016. Optimization of sintering temperature for the enhancement of pyroelectric properties of lead-free 0.88(Na0.5Bi0.5)TiO3-0.084(K0.5Bi0.5)TiO3-0.036BaTiO3 piezoelectric ceramics. Journal of Alloys and Compounds; 688: 77-87.
  • [15]. Zhu, R, Yin, Y, Fang, B, Chen, Z, Zhang, S, Ding, J, Zhao, X, Luo, H. 2016. Optimizing structure and electrical properties of high-Curie temperature PMN-PHT piezoelectric ceramics via tailoring sintering process. The European Physical Journal-Applied Physics; 74(3): 30101.
  • [16]. Liu, L, Fan, H, Ke, S, Chen, X. 2008. Effect of sintering temperature on the structure and properties of cerium-doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 piezoelectric ceramics. Journal of Alloys and Compounds; 458: 504-508.
  • [17]. Naceur, H, Megriche, A, El Maaoui, M. 2014. Effect of sintering temperature on microstructure and electrical properties of Sr1-x(Na0.5Bi0.5)xBi2Nb2O9 solid solutions. Journal of Advanced Ceramics; 3(1): 17-30.
  • [18]. Ketsuwan, P, Ngamjarurojana, A, Laosiritaworn, Y, Ananta, S, Yimnirun, R. 2007. Effect of Sintering Temperature on Phase Formation, Dielectric, Piezoelectric, and Ferroelectric Properties of Nb-Doped Pb(Zr0.52Ti0.48)O3 Ceramics. Ferroelectrics; 358: 35-41.
  • [19]. Wang, CH, Chang, SJ, Chang, PC. 2004. Effect of sintering conditions on characteristics of PbTiO3–PbZrO3–Pb(Mg1/3Nb2/3)O3–Pb(Zn1/3Nb2/3)O3. Materials Science and Engineering B; 111: 124-130.
  • [20]. Lente MH, Zanin AL, Vasiljevic J, Dos Santos IA, Eiras JA, Garcia D. 2004. Temperature Coefficient of Piezoelectric Constants in Pb(Mg1/3Nb2/3)O3-PbTiO3 Ceramics. Materials Research; 7(2): 369-372.
  • [21]. Hoffmann, MJ., Hammer M, Endriss A, Lupascu DC. 2001. Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics. Acta Materialia; 49: 1301–1310.
  • [22]. Nadoliisky, MM., Vassileva, TK., Vitkov, PB. 1992. Dielectric, Piezoelectric and Pyroelectric Properties of PbZrO3-PbTiO3-Pb(Mn1/3Sb2/3)O3 Ferroelectric System. Ferroelectrics; 129: 141–146.
There are 22 citations in total.

Details

Primary Language English
Subjects Electronic, Optics and Magnetic Materials, Ceramics in Materials Engineering
Journal Section Articles
Authors

Volkan Kalem 0000-0001-9128-5686

Osman Düzen 0009-0005-2628-013X

Publication Date June 28, 2024
Submission Date March 15, 2024
Acceptance Date June 24, 2024
Published in Issue Year 2024 Volume: 20 Issue: 2

Cite

APA Kalem, V., & Düzen, O. (2024). Influence of Sintering Time on Electrical Properties, Densification, and Microstructure of PMN-PT-PMS Piezoelectric Ceramics. Celal Bayar University Journal of Science, 20(2), 61-66. https://doi.org/10.18466/cbayarfbe.1452081
AMA Kalem V, Düzen O. Influence of Sintering Time on Electrical Properties, Densification, and Microstructure of PMN-PT-PMS Piezoelectric Ceramics. CBUJOS. June 2024;20(2):61-66. doi:10.18466/cbayarfbe.1452081
Chicago Kalem, Volkan, and Osman Düzen. “Influence of Sintering Time on Electrical Properties, Densification, and Microstructure of PMN-PT-PMS Piezoelectric Ceramics”. Celal Bayar University Journal of Science 20, no. 2 (June 2024): 61-66. https://doi.org/10.18466/cbayarfbe.1452081.
EndNote Kalem V, Düzen O (June 1, 2024) Influence of Sintering Time on Electrical Properties, Densification, and Microstructure of PMN-PT-PMS Piezoelectric Ceramics. Celal Bayar University Journal of Science 20 2 61–66.
IEEE V. Kalem and O. Düzen, “Influence of Sintering Time on Electrical Properties, Densification, and Microstructure of PMN-PT-PMS Piezoelectric Ceramics”, CBUJOS, vol. 20, no. 2, pp. 61–66, 2024, doi: 10.18466/cbayarfbe.1452081.
ISNAD Kalem, Volkan - Düzen, Osman. “Influence of Sintering Time on Electrical Properties, Densification, and Microstructure of PMN-PT-PMS Piezoelectric Ceramics”. Celal Bayar University Journal of Science 20/2 (June 2024), 61-66. https://doi.org/10.18466/cbayarfbe.1452081.
JAMA Kalem V, Düzen O. Influence of Sintering Time on Electrical Properties, Densification, and Microstructure of PMN-PT-PMS Piezoelectric Ceramics. CBUJOS. 2024;20:61–66.
MLA Kalem, Volkan and Osman Düzen. “Influence of Sintering Time on Electrical Properties, Densification, and Microstructure of PMN-PT-PMS Piezoelectric Ceramics”. Celal Bayar University Journal of Science, vol. 20, no. 2, 2024, pp. 61-66, doi:10.18466/cbayarfbe.1452081.
Vancouver Kalem V, Düzen O. Influence of Sintering Time on Electrical Properties, Densification, and Microstructure of PMN-PT-PMS Piezoelectric Ceramics. CBUJOS. 2024;20(2):61-6.