Research Article
BibTex RIS Cite

Kurkumin’in MCF-7 Meme Kanseri Hücreleri Üzerine GSK-3beta ve VEGF Sinyali Aracılı İnhibitör Etkisi

Year 2021, Volume: 8 Issue: 2, 337 - 342, 30.06.2021
https://doi.org/10.34087/cbusbed.767803

Abstract

Giriş ve Amaç: Günümüzde kanser tedavisinde destekleyici ve alternatif tedavilere yönelim söz konusudur. Bu nedenle, çalışmada kurkuminin hücre canlılığı ve hücre göçü üzerine etkisi MCF-7 meme kanseri ve L929 fibroblast hücrelerinde GSK-3beta ve VEGF molekülleri aracılığı ile araştırılması amaçlandı.
Gereç ve Yöntemler: Deneyde, sitotoksisite düzeyini MTT yöntemi ile belirlemek amacıyla, MCF-7 meme kanseri ve L929 fibroblast hücrelerine kurkumin beş farklı konsantrasyonda (5, 10, 20, 40 ve 80 µM) 24 ve 48 saat süre ile uygulandı. İmmunositokimya boyaması için, hücreler 5µM, 20µM ve 80µM kurkumin ile 48 saat muamele edildi. GSK-3beta ve VEGF ekspresyonları immunositokimyasal olarak belirlendi. İmmunositokimya boyanma sonuçları H-skor yöntemi ile değerlendirildi. Hücre göçü için, çizik yara modeli üç konsantrasyonda 48 saat süre ile muamele edilerek gerçekleştirildi, ve yara kapanma yüzdesi hesaplandı. Tüm sonuçlar istatistiksel olarak analiz edildi.
Bulgular: MTT analizi sonrasında, kurkuminin L929 hücreleri ile karşılaştırıldığında, MCF-7 kanser hücreleri üzerinde doza bağlı toksik etkiye sahip olduğu gözlendi. GSK-3beta ve VEGF’nin immunositokimyasal dağılımları, MCF-7 hücrelerinde kurkumin uygulanması ile belirgin bir şekilde azaldı. Bununla birlikte, kurkumin, kontrol grubu MCF-7 hücreleri ve L929 hücreleri ile karşılaştırıldığında hücre göçü üzerinde belirgin bir inhibitör etki gösterdi.
Sonuç: Kurkuminin moleküler etki mekanizmalarının bilinmesi, kanser tedavisinde kullanımı açısından güvenilirliğini destekleyen bir faktördür. Etki mekanizmasının tamamen ortaya konulabilmesi için in vivo çalışmalara ve gelişmiş tekniklere ihtiyaç vardır.

Supporting Institution

yok

References

  • Harbeck, N, Gnant, M, Breast cancer, Lancet, 2017, 18, 389(10074), 1134-1150.
  • Coughlin, S.S, Epidemiology of breast cancer in women, Advanced in Experimental Medicine and Biology, 2019, 1152, 9-29.
  • Jafari, S.H, Saadatpour, Z, Salmaninejad, A, Momeni, F, Mokhtari, M, Nahand, J.S, et al., M Breast cancer diagnosis: Imaging techniques and biochemical markers, Journal of Cell Physiology, 2019, 233(7), 5200-5213.
  • Yeo, S.K, Guan, J.L, Breast Cancer: Multiple subtypes within a tumor? Trends in Cancer, 2017, 3(11), 753-760.
  • Cabrera, E, Raninga, P, Khanna, K.K, Freire, R, GSK3-β stimulates claspin degradation via β-TrCP ubiquitin ligase and alters cancer cell survival, Cancers (Basel), 2019, 11(8), 1073.
  • Mancinelli, R, Carpino, G, Petrungaro, S, Mammola, C.L, Tomaipitinca, L, Filippini, A, et al., Multifaceted roles of GSK-3 in cancer and autophagy-related diseases, Oxidative Medicine and Cellular Longevity, 2017, 2017, 4629495.
  • Hegde, P.S, Wallin, J.J, Mancao, C, Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics, Seminars in Cancer Biology, 2018, 52(2), 117-124. Frezzetti, D, Gallo, M, Maiello, M.R, D'Alessio, A, Esposito, C, Chicchinelli, N, Normanno, N, De Luca, A, VEGF as a potential target in lung cancer, Expert Opinion on Therapeutic Targets, 2017, 21(10), 959-966.
  • Chen, Y, Zhang, L, Liu, W.X, Wang, K, VEGF and SEMA4D have synergistic effects on the promotion of angiogenesis in epithelial ovarian cancer, Cellular and Molecular Biology Letters, 2018, 23, 2.
  • Siveen, K.S, Prabhu, K, Krishnankutty, R, Kuttikrishnan, S, Tsakou, M, Alali, F.Q, Dermime, S, Mohammad, R.M, Uddin, S, Vascular Endothelial Growth Factor (VEGF) signaling in tumour vascularization: Potential and challenges, Current Vascular Pharmacology, 2017, 15(4), 339-351.
  • Ceci, C, Atzori, M.G, Lacal, P.M, Graziani, G, Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: Experimental evidence in different metastatic cancer models, International Journal of Molecular Science, 2020, 21(4), 1388.
  • Luo, J, Glycogen synthase kinase 3β (GSK3β) in tumorigenesis and cancer chemotherapy, Cancer Letters, 2009, 273(2), 194–200.
  • Shakoori, A, Ougolkov, A, et al, Deregulated GSK3β activity in colorectal cancer: its association with tumor cell survival and proliferation, Biochemical and Biophysical Research Communications, 2005, 334(4), 1365–1373.
  • Ougolkov, A.V, Fernandez-Zapico, M.E, Savoy, D.N, Urrutia, R.A, Billadeau, D.D, Glycogen synthase kinase-3β participates in nuclear factor κB-mediated gene transcription and cell survival in pancreatic cancer cells, Cancer Research, 2005, 65(6), 2076–2081.
  • Zhou, W, Wang, L, et al, ShRNA silencing glycogen synthase kinase-3 beta inhibits tumor growth and angiogenesis in pancreatic cancer, Cancer Letters, 2012, 316(2), 178–186.
  • Giordano, A, Tommonaro, G, Curcumin and cancer, Nutrients, 2019, 11(10), 2376.
  • Kotha, R.R, Luthria, D,L, Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects, Molecules, 2019, 24(16), 2930.
  • Aydemir, I, Türköz-Uluer, E, Korkmaz, O, Tuğlu M.I, İnan, S, Adjuvant effects of chemotherapeutics and Metformin on MFE-319 endometrial carcinoma cell line, Romanian Journal of Morphology and Embryology, 2020, 61(3).
  • Mete, M, Unsal, U.U, Aydemir, I, Sönmez, P.K, Tuglu, M.I, Punicic acid inhibits glioblastoma migration and proliferation via the PI3K/AKT1/mTOR signaling pathway, Anti-cancer Agents in Medicinal Chemistry, 2019, 19(9), 1120-1131.
  • Schmidt, B, Ferreira, C, Alves Passos, C.L, Silva, J.L, Fialho, E, Resveratrol, curcumin and piperine alter human glyoxalase 1 in MCF-7 breast cancer cells, International Journal of Molecular Science, 2020, 21(15), 5244.
  • Dalimi-Asl, S, Babaahmadi-Rezaei, H, Mohammadzadeh, G, Combination of silibinin and curcumin reduced leptin receptor expression in MCF-7 human breast cancer cell line, Iranian Journal of Medical Science, 2020, 45(6), 477-484.
  • Hasan, M, Elkhoury, K, Belhaj, N, Kahn, C, Tamayol, A, Barberi-Heyob, M, Arab-Tehrany, E, Linder, M, Growth-inhibitory effect of chitosan-coated liposomes encapsulating curcumin on MCF-7 breast cancer cells, Marine Drugs, 2020, 18(4), 217.
  • Nirgude, S, Mahadeva, R, Koroth, J, Kumar, S, Kumar, K.S.S, Gopalakrishnan, V, S Karki, S.S, Choudhary, B, ST09, a novel curcumin derivative, blocks cell migration by inhibiting matrix metalloproteases in breast cancer cells and inhibits tumor progression in EAC mouse tumor models, Molecules, 2020, 25(19), 4499.
  • Liu, J.L, Pan, Y.Y, Chen, O, Luan, Y, Xue, X, Zhao, J.J, Liu, L, Jia, H.Y, Curcumin inhibits MCF-7 cells by modulating the NF-κB signaling pathway, Oncology Letters, 2017, 14(5), 5581-5584.
  • Hajigholami, S, Veisi Malekshahi, Z, Bodaghabadi, N, Najafi, F, Shirzad, H, Sadeghizadeh, M, Nano packaged tamoxifen and curcumin; effective formulation against sensitive and resistant MCF-7 cells, Iranian Journal of Pharmaceutical Research, 2018, 17(1), 1-10.
  • Güney Eskiler, G, Deveci Özkan, A, Kaleli, S, Bilir, C, Inhibition of TLR4/TRIF/IRF3 signaling pathway by curcumin in breast cancer cells, Journal of Pharmacy and Pharmaceutical Science, 2019, 22(1), 281-291.
  • Ali, N.M, Yeap, S.K, Abu, N, Lim, K.L, Ky, H, Pauzi, A.Z.M, Ho, W.Y, Tan, S.W, Alan-Ong, H.K, Zareen, S, Alitheen, N.B, Akhtar, M.N, Synthetic curcumin derivative DK1 possessed G2/M arrest and induced apoptosis through accumulation of intracellular ROS in MCF-7 breast cancer cells, Cancer Cell International, 2017, 17, 30.
  • Li, S, Lu, J, Chen, Y, Xiong, N, Li, L, Zhang, J, Yang, H, Wu, C, Zeng, H, Liu, Y, MCP-1-induced ERK/GSK-3β/Snail signaling facilitates the epithelial-mesenchymal transition and promotes the migration of MCF-7 human breast carcinoma cells, Cellular and Molecular Immunology, 2017, 14(7), 621-630.
  • Zhang, X, Jiang, G, Sun, M, Zhou, H, Miao, Y, Liang, M, Wang, E, Zhang, Y, Cytosolic THUMPD1 promotes breast cancer cells invasion and metastasis via the AKT-GSK3-Snail pathway, Oncotarget, 2017, 8(8), 13357-13366.
  • Yu, J, Wang, X, Lu, Q, Wang, J, Li, L, Liao, X, Zhu, W, Lv, L, Zhi, X, Yu, J, Jin, Y, Zou, Q, Ou, Z, Liu, X, Zhou, P, Extracellular 5'-nucleotidase (CD73) promotes human breast cancer cells growth through AKT/GSK-3β/β-catenin/cyclinD1 signaling pathway, International Journal of Cancer, 2018, 142(5), 959-967.
  • Sohn, E.J, Jung, D.B, Lee, H, Han, I, Lee, J, Lee, H, Kim, S.H, CNOT2 promotes proliferation and angiogenesis via VEGF signaling in MDA-MB-231 breast cancer cells, Cancer Letters, 2018, 412, 88-98.
  • Su, J, Wang, J, Luo, J, Li, H, Ultrasound-mediated destruction of vascular endothelial growth factor (VEGF) targeted and paclitaxel loaded microbubbles for inhibition of human breast cancer cell MCF-7 proliferation, Molecular and Cellular Probes, 2019, 46, 101415.
  • Mohammadian, M, Feizollahzadeh, S, Mahmoudi, R, Toofani Milani, A, Rezapour-Firouzi, S, Karimi Douna, B, Hsp90 inhibitor; NVP-AUY922 in combination with doxorubicin induces apoptosis and downregulates VEGF in MCF-7 breast cancer cell line, Asian Pacific Journal of Cancer Prevention, 2020, 21(6), 1773-1778.
  • Liu, J.H, Chen, C, Li, ZY, Zou, Z.M, Gao, D.C, Zhang, X, et al., The MyD88 inhibitor TJ-M2010-2 suppresses proliferation, migration and invasion of breast cancer cells by regulating MyD88/GSK-3β and MyD88/NF-κB signalling pathways, Experimental Cell Research, 2020, 394(2), 112157.

The Inhibition Effect of Curcumin on MCF-7 Breast Cancer Cells via GSK-3beta and VEGF signals

Year 2021, Volume: 8 Issue: 2, 337 - 342, 30.06.2021
https://doi.org/10.34087/cbusbed.767803

Abstract

Objective: Nowadays, there is a tendency towards supportive and alternative therapies in cancer treatment. So, the aim was to search the effect of curcumin on the cell viability and migration via GSK-3beta and VEGF in MCF-7 breast cancer cells and L929 fibroblast cells.
Materials and Methods: In the experiment, MCF-7 breast cancer cells and L929 fibroblast cells were treated with curcumin at five concentrations (5, 10, 20, 40 and 80µM) for 24 and 48 hours, and MTT assay was used to detect the cytotoxicity level of curcumin. For immunocytochemical staining, both cells were exposed with 5µM, 20µM and 80µM of curcumin for 48 hours. The immunocytochemistry method was performed to evaluate the expressions of GSK-3beta and VEGF. The immunocytochemical results were evaluated using H-score. For cell migration, the scratch wound assay was done at three concentrations for 48 hours, and the percentage of wound closure was calculated. All data were analyzed statistically.
Results: After MTT assay, it was observed that curcumin had a dose-dependent toxic effect on MCF-7 cancer cells compared to L929 cells. The immunocytochemical distributions of GSK-3beta and VEGF were significantly decreased with the curcumin treatment in MCF-7 cells. However, curcumin showed a marked inhibitory effect on the cell migration in comparison with the non-treated MCF-7 cells and L929 cells.
Conclusion: Knowing the molecular effect mechanisms of curcumin used in cancer treatment is a factor that supports their reliability in terms of use. In vivo studies and advanced techniques are needed to fully reveal the mechanism of action.

References

  • Harbeck, N, Gnant, M, Breast cancer, Lancet, 2017, 18, 389(10074), 1134-1150.
  • Coughlin, S.S, Epidemiology of breast cancer in women, Advanced in Experimental Medicine and Biology, 2019, 1152, 9-29.
  • Jafari, S.H, Saadatpour, Z, Salmaninejad, A, Momeni, F, Mokhtari, M, Nahand, J.S, et al., M Breast cancer diagnosis: Imaging techniques and biochemical markers, Journal of Cell Physiology, 2019, 233(7), 5200-5213.
  • Yeo, S.K, Guan, J.L, Breast Cancer: Multiple subtypes within a tumor? Trends in Cancer, 2017, 3(11), 753-760.
  • Cabrera, E, Raninga, P, Khanna, K.K, Freire, R, GSK3-β stimulates claspin degradation via β-TrCP ubiquitin ligase and alters cancer cell survival, Cancers (Basel), 2019, 11(8), 1073.
  • Mancinelli, R, Carpino, G, Petrungaro, S, Mammola, C.L, Tomaipitinca, L, Filippini, A, et al., Multifaceted roles of GSK-3 in cancer and autophagy-related diseases, Oxidative Medicine and Cellular Longevity, 2017, 2017, 4629495.
  • Hegde, P.S, Wallin, J.J, Mancao, C, Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics, Seminars in Cancer Biology, 2018, 52(2), 117-124. Frezzetti, D, Gallo, M, Maiello, M.R, D'Alessio, A, Esposito, C, Chicchinelli, N, Normanno, N, De Luca, A, VEGF as a potential target in lung cancer, Expert Opinion on Therapeutic Targets, 2017, 21(10), 959-966.
  • Chen, Y, Zhang, L, Liu, W.X, Wang, K, VEGF and SEMA4D have synergistic effects on the promotion of angiogenesis in epithelial ovarian cancer, Cellular and Molecular Biology Letters, 2018, 23, 2.
  • Siveen, K.S, Prabhu, K, Krishnankutty, R, Kuttikrishnan, S, Tsakou, M, Alali, F.Q, Dermime, S, Mohammad, R.M, Uddin, S, Vascular Endothelial Growth Factor (VEGF) signaling in tumour vascularization: Potential and challenges, Current Vascular Pharmacology, 2017, 15(4), 339-351.
  • Ceci, C, Atzori, M.G, Lacal, P.M, Graziani, G, Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: Experimental evidence in different metastatic cancer models, International Journal of Molecular Science, 2020, 21(4), 1388.
  • Luo, J, Glycogen synthase kinase 3β (GSK3β) in tumorigenesis and cancer chemotherapy, Cancer Letters, 2009, 273(2), 194–200.
  • Shakoori, A, Ougolkov, A, et al, Deregulated GSK3β activity in colorectal cancer: its association with tumor cell survival and proliferation, Biochemical and Biophysical Research Communications, 2005, 334(4), 1365–1373.
  • Ougolkov, A.V, Fernandez-Zapico, M.E, Savoy, D.N, Urrutia, R.A, Billadeau, D.D, Glycogen synthase kinase-3β participates in nuclear factor κB-mediated gene transcription and cell survival in pancreatic cancer cells, Cancer Research, 2005, 65(6), 2076–2081.
  • Zhou, W, Wang, L, et al, ShRNA silencing glycogen synthase kinase-3 beta inhibits tumor growth and angiogenesis in pancreatic cancer, Cancer Letters, 2012, 316(2), 178–186.
  • Giordano, A, Tommonaro, G, Curcumin and cancer, Nutrients, 2019, 11(10), 2376.
  • Kotha, R.R, Luthria, D,L, Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects, Molecules, 2019, 24(16), 2930.
  • Aydemir, I, Türköz-Uluer, E, Korkmaz, O, Tuğlu M.I, İnan, S, Adjuvant effects of chemotherapeutics and Metformin on MFE-319 endometrial carcinoma cell line, Romanian Journal of Morphology and Embryology, 2020, 61(3).
  • Mete, M, Unsal, U.U, Aydemir, I, Sönmez, P.K, Tuglu, M.I, Punicic acid inhibits glioblastoma migration and proliferation via the PI3K/AKT1/mTOR signaling pathway, Anti-cancer Agents in Medicinal Chemistry, 2019, 19(9), 1120-1131.
  • Schmidt, B, Ferreira, C, Alves Passos, C.L, Silva, J.L, Fialho, E, Resveratrol, curcumin and piperine alter human glyoxalase 1 in MCF-7 breast cancer cells, International Journal of Molecular Science, 2020, 21(15), 5244.
  • Dalimi-Asl, S, Babaahmadi-Rezaei, H, Mohammadzadeh, G, Combination of silibinin and curcumin reduced leptin receptor expression in MCF-7 human breast cancer cell line, Iranian Journal of Medical Science, 2020, 45(6), 477-484.
  • Hasan, M, Elkhoury, K, Belhaj, N, Kahn, C, Tamayol, A, Barberi-Heyob, M, Arab-Tehrany, E, Linder, M, Growth-inhibitory effect of chitosan-coated liposomes encapsulating curcumin on MCF-7 breast cancer cells, Marine Drugs, 2020, 18(4), 217.
  • Nirgude, S, Mahadeva, R, Koroth, J, Kumar, S, Kumar, K.S.S, Gopalakrishnan, V, S Karki, S.S, Choudhary, B, ST09, a novel curcumin derivative, blocks cell migration by inhibiting matrix metalloproteases in breast cancer cells and inhibits tumor progression in EAC mouse tumor models, Molecules, 2020, 25(19), 4499.
  • Liu, J.L, Pan, Y.Y, Chen, O, Luan, Y, Xue, X, Zhao, J.J, Liu, L, Jia, H.Y, Curcumin inhibits MCF-7 cells by modulating the NF-κB signaling pathway, Oncology Letters, 2017, 14(5), 5581-5584.
  • Hajigholami, S, Veisi Malekshahi, Z, Bodaghabadi, N, Najafi, F, Shirzad, H, Sadeghizadeh, M, Nano packaged tamoxifen and curcumin; effective formulation against sensitive and resistant MCF-7 cells, Iranian Journal of Pharmaceutical Research, 2018, 17(1), 1-10.
  • Güney Eskiler, G, Deveci Özkan, A, Kaleli, S, Bilir, C, Inhibition of TLR4/TRIF/IRF3 signaling pathway by curcumin in breast cancer cells, Journal of Pharmacy and Pharmaceutical Science, 2019, 22(1), 281-291.
  • Ali, N.M, Yeap, S.K, Abu, N, Lim, K.L, Ky, H, Pauzi, A.Z.M, Ho, W.Y, Tan, S.W, Alan-Ong, H.K, Zareen, S, Alitheen, N.B, Akhtar, M.N, Synthetic curcumin derivative DK1 possessed G2/M arrest and induced apoptosis through accumulation of intracellular ROS in MCF-7 breast cancer cells, Cancer Cell International, 2017, 17, 30.
  • Li, S, Lu, J, Chen, Y, Xiong, N, Li, L, Zhang, J, Yang, H, Wu, C, Zeng, H, Liu, Y, MCP-1-induced ERK/GSK-3β/Snail signaling facilitates the epithelial-mesenchymal transition and promotes the migration of MCF-7 human breast carcinoma cells, Cellular and Molecular Immunology, 2017, 14(7), 621-630.
  • Zhang, X, Jiang, G, Sun, M, Zhou, H, Miao, Y, Liang, M, Wang, E, Zhang, Y, Cytosolic THUMPD1 promotes breast cancer cells invasion and metastasis via the AKT-GSK3-Snail pathway, Oncotarget, 2017, 8(8), 13357-13366.
  • Yu, J, Wang, X, Lu, Q, Wang, J, Li, L, Liao, X, Zhu, W, Lv, L, Zhi, X, Yu, J, Jin, Y, Zou, Q, Ou, Z, Liu, X, Zhou, P, Extracellular 5'-nucleotidase (CD73) promotes human breast cancer cells growth through AKT/GSK-3β/β-catenin/cyclinD1 signaling pathway, International Journal of Cancer, 2018, 142(5), 959-967.
  • Sohn, E.J, Jung, D.B, Lee, H, Han, I, Lee, J, Lee, H, Kim, S.H, CNOT2 promotes proliferation and angiogenesis via VEGF signaling in MDA-MB-231 breast cancer cells, Cancer Letters, 2018, 412, 88-98.
  • Su, J, Wang, J, Luo, J, Li, H, Ultrasound-mediated destruction of vascular endothelial growth factor (VEGF) targeted and paclitaxel loaded microbubbles for inhibition of human breast cancer cell MCF-7 proliferation, Molecular and Cellular Probes, 2019, 46, 101415.
  • Mohammadian, M, Feizollahzadeh, S, Mahmoudi, R, Toofani Milani, A, Rezapour-Firouzi, S, Karimi Douna, B, Hsp90 inhibitor; NVP-AUY922 in combination with doxorubicin induces apoptosis and downregulates VEGF in MCF-7 breast cancer cell line, Asian Pacific Journal of Cancer Prevention, 2020, 21(6), 1773-1778.
  • Liu, J.H, Chen, C, Li, ZY, Zou, Z.M, Gao, D.C, Zhang, X, et al., The MyD88 inhibitor TJ-M2010-2 suppresses proliferation, migration and invasion of breast cancer cells by regulating MyD88/GSK-3β and MyD88/NF-κB signalling pathways, Experimental Cell Research, 2020, 394(2), 112157.
There are 33 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Araştırma Makalesi
Authors

İşil Aydemir 0000-0002-4143-7319

Publication Date June 30, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Aydemir, İ. (2021). The Inhibition Effect of Curcumin on MCF-7 Breast Cancer Cells via GSK-3beta and VEGF signals. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 8(2), 337-342. https://doi.org/10.34087/cbusbed.767803
AMA Aydemir İ. The Inhibition Effect of Curcumin on MCF-7 Breast Cancer Cells via GSK-3beta and VEGF signals. CBU-SBED: Celal Bayar University-Health Sciences Institute Journal. June 2021;8(2):337-342. doi:10.34087/cbusbed.767803
Chicago Aydemir, İşil. “The Inhibition Effect of Curcumin on MCF-7 Breast Cancer Cells via GSK-3beta and VEGF Signals”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8, no. 2 (June 2021): 337-42. https://doi.org/10.34087/cbusbed.767803.
EndNote Aydemir İ (June 1, 2021) The Inhibition Effect of Curcumin on MCF-7 Breast Cancer Cells via GSK-3beta and VEGF signals. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8 2 337–342.
IEEE İ. Aydemir, “The Inhibition Effect of Curcumin on MCF-7 Breast Cancer Cells via GSK-3beta and VEGF signals”, CBU-SBED: Celal Bayar University-Health Sciences Institute Journal, vol. 8, no. 2, pp. 337–342, 2021, doi: 10.34087/cbusbed.767803.
ISNAD Aydemir, İşil. “The Inhibition Effect of Curcumin on MCF-7 Breast Cancer Cells via GSK-3beta and VEGF Signals”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8/2 (June 2021), 337-342. https://doi.org/10.34087/cbusbed.767803.
JAMA Aydemir İ. The Inhibition Effect of Curcumin on MCF-7 Breast Cancer Cells via GSK-3beta and VEGF signals. CBU-SBED: Celal Bayar University-Health Sciences Institute Journal. 2021;8:337–342.
MLA Aydemir, İşil. “The Inhibition Effect of Curcumin on MCF-7 Breast Cancer Cells via GSK-3beta and VEGF Signals”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, vol. 8, no. 2, 2021, pp. 337-42, doi:10.34087/cbusbed.767803.
Vancouver Aydemir İ. The Inhibition Effect of Curcumin on MCF-7 Breast Cancer Cells via GSK-3beta and VEGF signals. CBU-SBED: Celal Bayar University-Health Sciences Institute Journal. 2021;8(2):337-42.