Araştırma Makalesi
BibTex RIS Kaynak Göster

BALB/c Tipi Fare Embriyolarında Gelişen Nefronda Juxtaglomerular Aparatus Hücrelerinin Farklılaşmaları

Yıl 2021, Cilt: 8 Sayı: 3, 395 - 404, 30.09.2021
https://doi.org/10.34087/cbusbed.827212

Öz

Giriş ve Amaç: Bu çalışmada BALB/c tipi fare embriyolarında nefron gelişmesi ve bu süreç sırasında juxtaglomerular apparatus (JGA) hücrelerinin farklılaşmaları incelenmiştir. Kalın ve ince epon kesitler sırasıyla ışık mikroskobu (IM) ve geçirimli elektron mikroskobu (TEM) ile incelenmiştir.
Gereç ve Yöntemler: Nefron gelişmesi nefrojenik kesenin virgül şekilli yapı, S-şekilli yapı, prekapiller, olgunlaşmamış glomerulus ve olgunlaşmış glomerulus safhalarını geçmesiyle tamamlanır. JGA, IM düzeyinde nefron gelişmesinin olgunlaşmış glomerulus evresinde ayırt edilir. TEM gözlemlerine göre JGA’ yı oluşturan jukstaglomerular (JG) hücreler ile macula densa (MD) hücrelerinin farklılaşmalarına dair işaretler daha erken, prekapiller evrede görülür. Prekapiller evrede JG hücreleri karakterize eden gelişmiş Golgi sahaları içinde çok sayıda elektronca az yoğun küçük kesecikler ile az sayıda elektronca yoğun iri renin granülleri görülür. Olgunlaşmış glomerulus evresinde JG hücrelerdeki elektronca yoğun iri granüllerin sayısı artar. MD hücrelerinin farklılaşmalarını prekapiller evrede apikal yüzlerinde primer silia şekillenmesi işaret eder. Olgunlaşmış glomerulus evresinde MD hücrelerinin bazal ve lateral yüzlerinde derin zar katlanmaları şekillenir. Bu bölgelerde çok sayıda irileşmiş mitokondriler yer alır.
Bulgular: Renin-Angiotensin sistemin düzenlenmesinde mutlak rol oynayan JG hücreler ile MD hücreleri prekapiller evrede, nefron gelişmesi tamamlanmadan ve kan damarları şekillenmeden önce farklılaşırlar.
Sonuç: JGA hücrelerinin bu kadar erken farklılaşmaları renin-anjiotensin sisteminin hem böbrek gelişmesi ve hem de genel embriyo gelişmesindeki önemini işaret eder.

Kaynakça

  • Dressler, G.R, Advances in early kidney specification, development and patterning, Development, 2009, 136(23), 3863-74.
  • Krause, M, Rak-Raszewska, A, Pietila, I, Quaggin, S.E, Vainio, S, Signaling during kidney development, Cells, 2015, 4(2), 112-32.
  • Vainio, S, Lin, Y, Coordinating early kidney development: lessons from gene targeting, Nature Reviews Genetics, 2002, 3(7), 533-43.
  • Costantini, F, Kopan, R, Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development, Developmental Cell, 2010, 18(5), 698-712.
  • Gilbert, S.F, Barresi, M.J.F, Developmental Biology, 11th Edition, American Journal of Medical Genetics Part A, 2017, 173(5), 1430-1430.
  • Reidy, K.J, Rosenblum, N.D, Cell and molecular biology of kidney development, Seminars in nephrology, 2009, 29(4), 321-37.
  • Self, M, Lagutin, O.V, Bowling, B, Hendrix, J, Cai, Y, Dressler G.R, Oliver G, Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney, The EMBO journal, 2006, 25(21), 5214-28.
  • Hanner, F, von Maltzahn, J, Maxeiner, S, Toma, I, Sipos, A, Kruger, O, Willecke, K, Peti-Peterdi, J, Connexin45 is expressed in the juxtaglomerular apparatus and is involved in the regulation of renin secretion and blood pressure, American journal of physiology. Regulatory, integrative and comparative physiology, 2008, 295(2), R371-80.
  • Yao, J, Oite, T, Kitamura, M, Gap junctional intercellular communication in the juxtaglomerular apparatus, American Journal of Physiology - Renal Physiology, 2009, 296(5), F939-F946.
  • Carlstrom, M, Wilcox, C.S, Arendshorst, W.J, Renal autoregulation in health and disease, Physiology Review, 2015, 95(2), 405-511.
  • Castellanos Rivera, R.M, Monteagudo, M.C, Pentz, E.S, Glenn, S.T, Gross,, K.W, Carretero, O, Sequeira-Lopez M.L., Gomez R.A., Transcriptional regulator RBP-J regulates the number and plasticity of renin cells, Physiological Genomics, 2011, 43(17), 1021-8.
  • Fyhrquist, F, Saijonmaa, O, Renin-angiotensin system revisited, Journal of internal medicine, 2008, 264(3), 224-36.
  • Laragh, J.H, Sealey, J.E, The plasma renin test reveals the contribution of body sodium-volume content (V) and renin-angiotensin (R) vasoconstriction to long-term blood pressure, American journal of hypertension, 2011, 24(11), 1164-80.
  • Li, X.C, Zhu, D, Zheng, X, Zhang, J, Zhuo, J.L, Intratubular and intracellular renin-angiotensin system in the kidney: a unifying perspective in blood pressure control, Clinical science (London, England : 1979), 2018, 132(13), 1383-1401.
  • Schweda, F, Salt feedback on the renin-angiotensin-aldosterone system, Pflugers Archiv : European journal of physiology, 2015, 467(3), 565-76.
  • Freeburg, P.B, Abrahamson, D.R, Dissecting the JGA: new functions for JG cells?, Regulatory, integrative and comparative physiology, 2004, 286(3), R449-50.
  • Martini, A.G, Danser A.H.J, Juxtaglomerular Cell Phenotypic Plasticity, High blood pressure & cardiovascular prevention: the official journal of the Italian Society of Hypertension, 2017.
  • Peti-Peterdi, J, Harris R.C, Macula densa sensing and signaling mechanisms of renin release, Journal of the American Society of Nephrology : JASN, 2010, 21(7), 1093-6.
  • Schweda, F, Friis, U, Wagner, C, Skott, O, Kurtz, A, Renin release, Physiology (Bethesda), 2007, 22, 310-9. 20. Sequeira Lopez, M.L, Pentz, E.S, Nomasa, T, Smithies, O, Gomez, R.A, Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened, Developmental cell, 2004, 6(5), 719-28.
  • Pentz, E.S, Moyano, M.A, Thornhill, B.A, Sequeira Lopez, M.L, Gomez, R.A, Ablation of renin-expressing juxtaglomerular cells results in a distinct kidney phenotype, American journal of physiology. Regulatory, integrative and comparative physiology, 2004, 286(3), R474-83.
  • Brunskill, E.W, Georgas, K, Rumballe, B, Little, M.H, Potter, S.S, Defining the molecular character of the developing and adult kidney podocyte, PLoS One, 2011, 6(9), e24640.
  • Friis, U.G, Madsen, K, Stubbe, J, Hansen, P.B, Svenningsen, P, Bie, P, et al., Regulation of renin secretion by renal juxtaglomerular cells, Pflugers Archive, 2013, 465(1), 25-37.
  • Kurtz, A, Renin release: sites, mechanisms, and control, Annual Review of Physiology, 2011, 73, 377-99. 25. Peti-Peterdi, J, Newly Stemming Functions of Macula Densa–Derived Prostanoids, Hypertension, 2015, 65(5), 987-988.
  • Vargas, S.L, Toma, I, Kang, J.J, Meer, E.J, Peti-Peterdi, J, Activation of the succinate receptor GPR91 in macula densa cells causes renin release, Journal of the American Society of Nephrology : JASN, 2009, 20(5), 1002-11.
  • Song, J, Wang, L, Fan, F, Wei, J, Zhang, J, Lu Y, Fu Y, Wang S, Juncos L.A, Liu R, Role of the Primary Cilia on the Macula Densa and Thick Ascending Limbs in Regulation of Sodium Excretion and Hemodynamics, Hypertension, 2017, 70(2), 324-333.
  • Rielle, J.C, Brown, D, Orci, L, Differences in glycocalyx composition between cells of the cortical thick ascending limb of Henle and the macula densa revealed by lectin-gold cytochemistry, The Anatomical record, 1987, 218(3), 243-8.
  • Komlosi, P, Bell, P.D, Zhang, Z.R, Tubuloglomerular feedback mechanisms in nephron segments beyond the macula densa, Current opinion in nephrology and hypertension, 2009, 18(1), 57-62.
  • Bell, P.D, Komlosi, P, Zhang, Z.-R, ATP as a mediator of macula densa cell signalling, Purinergic Signalling, 2009, 5(4), 461-471.
  • Sipos, A, Vargas S, Peti-Peterdi J, Direct demonstration of tubular fluid flow sensing by macula densa cells, American Journal of Physiology - Renal Physiology, 2010, 299(5), F1087-F1093.
  • Ibarra, M.E, Albertoni Borghese, M.F, Majowicz, M.P, Ortiz M.C, Loidl F, Rey‐Funes, M, Di Ciano, L.A, Ibarra, F.R, Concerted regulation of renal plasma flow and glomerular filtration rate by renal dopamine and NOS I in rats on high salt intake, Physiological Reports, 2017, 5(6).
  • Persson, A.E, Bachmann S, Constitutive nitric oxide synthesis in the kidney--functions at the juxtaglomerular apparatus, Acta physiologica Scandinavica, 2000, 169(4), 317-324.
  • Tojo, A, Gross, S.S, Zhang, L, Tisher, C.C, Schmidt, H.H, Wilcox, C.S, Madsen, K.M, Immunocytochemical localization of distinct isoforms of nitric oxide synthase in the juxtaglomerular apparatus of normal rat kidney, Journal of the American Society of Nephrology, 1994, 4(7), 1438-47.
  • Persson, A.E.G, Ollerstam, A, Liu, R, Brown, R, Mechanisms for macula densa cell release of renin, Acta Physiologica Scandinavica, 2004, 181(4), 471-474.
  • Wang, L, Shen, C, Liu, H, Wang, S, Chen, X, Roman, R.J, Juncos, L.A, Lu, Y, Wei, J, Zhang, J, Yip, K.P, Liu, R, Shear stress blunts tubuloglomerular feedback partially mediated by primary cilia and nitric oxide at the macula densa, American journal of physiology. Regulatory, integrative and comparative physiology, 2015, 309(7), R757-66.
  • Abou Alaiwi, W.A, Lo, S.T, Nauli, S.M, Primary cilia: highly sophisticated biological sensors, Sensors (Basel), 2009, 9(9), 7003-20.
  • Christensen, S.T, Pedersen, L.B, Schneider, L, Satir, P, Sensory cilia and integration of signal transduction in human health and disease, Traffic, 2007, 8(2), 97-109.
  • Gerdes, J.M, Davis, E.E, Katsanis, N, The vertebrate primary cilium in development, homeostasis, and disease, Cell, 2009, 137(1), 32-45.
  • Ke, Y.N, Yang, W.X, Primary cilium: an elaborate structure that blocks cell division?, Gene, 2014, 547(2), 175-85.
  • Prasad, R.M, Jin, X, Nauli, S.M, Sensing a sensor: identifying the mechanosensory function of primary cilia, Biosensors (Basel), 2014, 4(1), 47-62.
  • Verschuren, E.H.J, Castenmiller, C, Peters, D.J.M, Arjona, F.J, Bindels, R.J.M, Hoenderop, J.G.J, Sensing of tubular flow and renal electrolyte transport, Nature reviews. Nephrology, 2020, 16(6), 337-351.
  • Barker, A.R, Thomas, R, Dawe, H.R, Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development, Organogenesis, 2014, 10(1), 96-107.
  • Pazour, G.J, Witman, G.B, The vertebrate primary cilium is a sensory organelle, Current opinion in cell biology, 2003, 15(1), 105-10.
  • Satir, P, Pedersen, L.B, Christensen, S.T, The primary cilium at a glance, Journal of cell science, 2010, 123(Pt 4), 499-503.
  • Veland, I.R, Awan, A, Pedersen, L.B, Yoder, B.K, Christensen, S.T, Primary cilia and signaling pathways in mammalian development, health and disease, Nephron Physiology, 2009, 111(3), 39-53.
  • Venkatesh, D, Primary cilia, Journal of oral and maxillofacial pathology : JOMFP, 2017, 21(1), 8-10.
  • Hossain, D, Tsang, W.Y, The role of ubiquitination in the regulation of primary cilia assembly and disassembly, Seminars in cell & developmental biology, 2019, 93, 145-152.
  • Carroll, B, Korolchuk V.I, Nutrient sensing, growth and senescence, The FEBS journal, 2018, 285(11), 1948-1958. Christensen, S.T, Pedersen S.F, Satir P, Veland I.R, Schneider L, The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair, Current topics in developmental biology, 2008, 85, 261-301.
  • Goetz, S.C, Anderson, K.V, The primary cilium: a signalling centre during vertebrate development, Nature reviews, Genetics, 2010, 11(5), 331-44.
  • Malicki, J.J, Johnson, C.A, The Cilium: Cellular Antenna and Central Processing Unit, Trends in cell biology, 2017, 27(2), 126-140.
  • Muhammad, H, Rais, Y, Miosge, N, Ornan, E.M, The primary cilium as a dual sensor of mechanochemical signals in chondrocytes, Cellular and molecular life sciences : CMLS, 2012, 69(13), 2101-7.
  • Nauli, S.M, Jin, X, AbouAlaiwi, W.A, El-Jouni, W, Su, X, Zhou J, Non-motile primary cilia as fluid shear stress mechanosensors, Methods in enzymology, 2013, 525, 1-20.
  • Cortes, C.R, Metzis, V, Wicking, C, Unmasking the ciliopathies: craniofacial defects and the primary cilium, Wiley interdisciplinary reviews. Developmental biology, 2015, 4(6), 637-53.
  • Pala, R, Alomari, N, Nauli, S.M, Primary Cilium-Dependent Signaling Mechanisms, International journal of molecular sciences, 2017, 18(11).
  • Foerster, P, Daclin, M, Asm, S, Faucourt, M, Boletta, A, Genovesio, A, et al., mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis, Development, 2017, 144(2), 201-210.
  • Kirschen, G.W, Xiong, Q, Primary cilia as a novel horizon between neuron and environment, Neural regeneration research, 2017, 12(8), 1225-1230.
  • Diguet, N, Le Garrec, J.F, Lucchesi, T, Meilhac, S.M, Imaging and analyzing primary cilia in cardiac cells, Methods in cell biology, 2015, 127, 55-73.
  • Noda, K, Kitami, M, Kitami, K, Kaku, M, Komatsu, Y, Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development, Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(19), E2589-97.
  • Yuan, X, Yang, S, Primary Cilia and Intraflagellar Transport Proteins in Bone and Cartilage, Journal of dental research, 2016, 95(12), 1341-1349.
  • Cai, S, Bodle, J.C, Mathieu, P.S, Amos, A, Hamouda, M, Bernacki, S, et al., Primary cilia are sensors of electrical field stimulation to induce osteogenesis of human adipose-derived stem cells, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2017, 31(1), 346-355.
  • Hampl, M, Cela, P, Szabo-Rogers, H.L, Kunova Bosakova, M, Dosedelova, H, Krejci, P, Buchtova, M, Role of Primary Cilia in Odontogenesis, Journal of dental research, 2017, 96(9), 965-974.
  • Satir, P, CILIA: before and after, Cilia, 2017, 6, 1.
  • Sherpa, R.T, Atkinson, K.F, Ferreira, V.P, Nauli, S.M, Rapamycin increases length and mechanosensory function of primary cilia in renal epithelial and vascular endothelial cells, International education and research journal, 2016, 2(12), 91-97.
  • Wheway, G, Nazlamova, L, Hancock, J.T, Signaling through the Primary Cilium, Frontiers in cell and developmental biology, 2018, 6, 8.
  • Davis, E.E, Brueckner M., Katsanis N., The emerging complexity of the vertebrate cilium: new functional roles for an ancient organelle, Developmental cell, 2006, 11(1), 9-19.
  • .Rosenbaum, J.L, Witman, G.B, Intraflagellar transport, Nature reviews. Molecular cell biology, 2002, 3(11), 813-25.
  • Avalos, Y, Pena-Oyarzun, D, Budini, M, Morselli, E, Criollo, A, New Roles of the Primary Cilium in Autophagy, BioMed research international, 2017, 2017, 4367019.
  • Ko, J.Y, Functional Study of the Primary Cilia in ADPKD, Advances in experimental medicine and biology, 2016, 933, 45-57.
  • Sottiurai, V, Malvin R.L, The demonstration of cilia in canine macula densa cells, American Journal of Anatomy, 1972, 135(2), 281-6.
  • Norgaard, T, The ultrastructure of the macula densa during altered sodium intake. A morphometric study of the macula densa in the rabbit nephron, Acta pathologica, microbiologica, et immunologica Scandinavica. Section A, Pathology, 1982, 90(1), 67-73.
  • Karnovsky, M, A Formaldehyde-Glutaraldehyde Fixative of High Osmolality for Use in Electron Microscopy, Journal of Cell Biology, 1964, 27, 137-8A.
  • Reynolds, E.S, The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, Journal of Cell Biology, 1963, 17, 208-12.
  • Quaggin, S.E, Kreidberg, J.A, Development of the renal glomerulus: good neighbors and good fences, Development, 2008, 135(4), 609-20.
  • Vaughan, M.R, Quaggin, S.E, How do mesangial and endothelial cells form the glomerular tuft?, Journal of the American Society of Nephrology : JASN, 2008, 19(1), 24-33.
  • Lyons, K.M, Hogan, B.L, Robertson, E.J, Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development, Mechanisms of development, 1995, 50(1), 71-83.
  • Huang, J, Arsenault, M, Kann, M, Lopez-Mendez, C, Saleh, M, Wadowska, D, et al., The transcription factor Sry-related HMG box-4 (SOX4) is required for normal renal development in vivo, Developmental dynamics : an official publication of the American Association of Anatomists, 2013, 242(6), 790-9.
  • Kobayashi, A, Valerius, M.T, Mugford, J.W, Carroll, T.J, Self M, Oliver, G, McMahon, A.P, Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development, Cell stem cell, 2008, 3(2), 169-81.
  • Davies, J.A, Morphogenesis of the metanephric kidney, The Scientific World Journal, 2002, 2, 1937-50.
  • Goto, S, Yaoita, E, Matsunami, H, Kondo, D, Yamamoto, T, Kawasaki, K, Arakawa, M, Kihara, I, Involvement of R-cadherin in the early stage of glomerulogenesis, Journal of the American Society of Nephrology : JASN, 1998, 9(7), 1234-41.
  • Petermann, A, Hiromura, K, Pippin, J, Blonski, M, Couser, W.G, Kopp, J, Mundel, P, Shankland, S.J, Differential expression of d-type cyclins in podocytes in vitro and in vivo, The American journal of pathology, 2004, 164(4), 1417-24.
  • Gomez, R.A, Belyea, B, Medrano, S, Pentz, E.S, Sequeira-Lopez, M.L, Fate and plasticity of renin precursors in development and disease, Pediatric nephrology (Berlin, Germany), 2014, 29(4), 721-6.
  • Lin, E.E, Sequeira-Lopez, M.L, Gomez, R.A, RBP-J in FOXD1+ renal stromal progenitors is crucial for the proper development and assembly of the kidney vasculature and glomerular mesangial cells, American journal of physiology, Renal physiology, 2014, 306(2), F249-58.
  • Sequeira Lopez, M.L, Gomez, R.A, Development of the renal arterioles, Journal of the American Society of Nephrology : JASN, 2011, 22(12), 2156-65.
  • Sequeira-Lopez, M.L, Nagalakshmi, V.K, Li, M, Sigmund, C.D, Gomez, R.A, Vascular versus tubular renin: role in kidney development, American journal of physiology. Regulatory, integrative and comparative physiology, 2015, 309(6), R650-7.
  • Sequeira Lopez, M.L, Pentz, E.S, Robert, B, Abrahamson, D.R, Gomez, R.A, Embryonic origin and lineage of juxtaglomerular cells, American journal of physiology. Renal physiology, 2001, 281(2), F345-56. 88. Gomez, R.A, Lopez, M.L, Plasticity of Renin Cells in the Kidney Vasculature, Current hypertension reports, 2017, 19(2), 14.
  • Lichtnekert, J., Kaverina, N.V, Eng, D.G, Gross, K.W, Kutz J.N, Pippin, J.W, Shankland, S.J, Renin-Angiotensin-Aldosterone System Inhibition Increases Podocyte Derivation from Cells of Renin Lineage, Journal of the American Society of Nephrology : JASN, 2016, 27(12), 3611-3627.
  • McClelland, A.D, Lichtnekert, J, Eng, D.G, Pippin, J.W, Gross K.W, Gharib, S.A, et al., Charting the transcriptional landscape of cells of renin lineage following podocyte depletion, PLoS One, 2017, 12(12), e0189084.
  • Pan, L, Gross, K.W, Transcriptional regulation of renin: an update, Hypertension, 2005, 45(1), 3-8.
  • Steppan, D, Zugner, A, Rachel, R, Kurtz, A, Structural analysis suggests that renin is released by compound exocytosis, Kidney international, 2013, 83(2), 233-41.
  • Pratt, R.E, Carleton, J.E, Richie, J.P, Heusser, C, Dzau, V.J, Human renin biosynthesis and secretion in normal and ischemic kidneys, Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(22), 7837-40.
  • Izawa, I, Goto, H, Kasahara, K, Inagaki, M, Current topics of functional links between primary cilia and cell cycle, Cilia, 2015, 4, 12.
  • Maharjan, Y, Lee, J.N, Kwak, S, Lim, H, Dutta, R.K, Liu, Z.Q, et al., Autophagy alteration prevents primary cilium disassembly in RPE1 cells, Biochemical and biophysical research communications, 2018, 500(2), 242-248.
  • Marra, A.N, Li, Y, Wingert, R.A, Antennas of organ morphogenesis: the roles of cilia in vertebrate kidney development, Genesis, 2016, 54(9), 457-69.
  • Deane, J.A, Ricardo, S.D, Emerging roles for renal primary cilia in epithelial repair, International review of cell and molecular biology, 2012, 293,169-93.
  • Han, S.J, Jung, J.K, Im, S.S, Lee, S.R, Jang, B.C, Park, K.M, Kim, J.I, Deficiency of primary cilia in kidney epithelial cells induces epithelial to mesenchymal transition, Biochemical and biophysical research communications, 2018, 496(2), 450-454.
  • Jamal, M.H, Nunes, A.C.F, Vaziri, N.D, Ramchandran, R, Bacallao, R.L, Nauli, A.M, et al., Rapamycin treatment correlates changes in primary cilia expression with cell cycle regulation in epithelial cells, Biochemical pharmacology, 2020, 178, 114056.
  • Kobayashi, T, Dynlacht, B.D, Regulating the transition from centriole to basal body, The Journal of cell biology, 2011, 193(3), 435-444. 101. Sanchez, I, Dynlacht, B.D, Cilium assembly and disassembly, Nature Cell Biology, 2016, 18(7), 711-7.

Differentiation of Juxtaglomerular Apparatus Cells in Developing Nephrons in BALB /c Type Mouse Embryos

Yıl 2021, Cilt: 8 Sayı: 3, 395 - 404, 30.09.2021
https://doi.org/10.34087/cbusbed.827212

Öz

Objective: This study examined the development of nephrons and the differentiation of juxtaglomerular apparatus (JGA) cells in BALB/c type mouse embryos. Thick and thin epon sections were investigated by light microscopy (LM) and transmission electron microscopy (TEM) respectively.
Materials and Methods: Nephron development is completed by passing through the nephrogenic vesicles in the respected stages of comma shape body, S-shape body, precapillary, immature glomerular, and mature glomerular stage. JGA is distinguished in the mature glomerular stage of nephron development at LM level. According to TEM observations, signs of differentiation of juxtaglomerular (JG) cells and macula densa (MD) cells forming JGA are seen earlier, in precapillary stage. In developed Golgi fields that characterize JG cells, large number of electron lucent small vesicles and small number of electron dense large renin granules are seen in the precapillary stage. In the mature glomerulus, the number of electron dense large granules increases in JG cells. The differentiation of MD cells is indicated by the formation of primary cilia on their apical faces in precapillary stage. Deep membrane folds are formed in the basal and lateral faces of MD cells in the mature glomerular stage. There are many numbers of large mitochondria in these regions.
Results: JG and MD cells, which play an absolute role in the regulation of the renin-angiotensin system are differentiated in precapillary stage before completion of nephron development and formation of blood vessels.
Conclusion: Such early differentiation of JGA cells suggests that the renin-angiotensin system is important both in the development of the kidney and in the total development of embryo.

Kaynakça

  • Dressler, G.R, Advances in early kidney specification, development and patterning, Development, 2009, 136(23), 3863-74.
  • Krause, M, Rak-Raszewska, A, Pietila, I, Quaggin, S.E, Vainio, S, Signaling during kidney development, Cells, 2015, 4(2), 112-32.
  • Vainio, S, Lin, Y, Coordinating early kidney development: lessons from gene targeting, Nature Reviews Genetics, 2002, 3(7), 533-43.
  • Costantini, F, Kopan, R, Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development, Developmental Cell, 2010, 18(5), 698-712.
  • Gilbert, S.F, Barresi, M.J.F, Developmental Biology, 11th Edition, American Journal of Medical Genetics Part A, 2017, 173(5), 1430-1430.
  • Reidy, K.J, Rosenblum, N.D, Cell and molecular biology of kidney development, Seminars in nephrology, 2009, 29(4), 321-37.
  • Self, M, Lagutin, O.V, Bowling, B, Hendrix, J, Cai, Y, Dressler G.R, Oliver G, Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney, The EMBO journal, 2006, 25(21), 5214-28.
  • Hanner, F, von Maltzahn, J, Maxeiner, S, Toma, I, Sipos, A, Kruger, O, Willecke, K, Peti-Peterdi, J, Connexin45 is expressed in the juxtaglomerular apparatus and is involved in the regulation of renin secretion and blood pressure, American journal of physiology. Regulatory, integrative and comparative physiology, 2008, 295(2), R371-80.
  • Yao, J, Oite, T, Kitamura, M, Gap junctional intercellular communication in the juxtaglomerular apparatus, American Journal of Physiology - Renal Physiology, 2009, 296(5), F939-F946.
  • Carlstrom, M, Wilcox, C.S, Arendshorst, W.J, Renal autoregulation in health and disease, Physiology Review, 2015, 95(2), 405-511.
  • Castellanos Rivera, R.M, Monteagudo, M.C, Pentz, E.S, Glenn, S.T, Gross,, K.W, Carretero, O, Sequeira-Lopez M.L., Gomez R.A., Transcriptional regulator RBP-J regulates the number and plasticity of renin cells, Physiological Genomics, 2011, 43(17), 1021-8.
  • Fyhrquist, F, Saijonmaa, O, Renin-angiotensin system revisited, Journal of internal medicine, 2008, 264(3), 224-36.
  • Laragh, J.H, Sealey, J.E, The plasma renin test reveals the contribution of body sodium-volume content (V) and renin-angiotensin (R) vasoconstriction to long-term blood pressure, American journal of hypertension, 2011, 24(11), 1164-80.
  • Li, X.C, Zhu, D, Zheng, X, Zhang, J, Zhuo, J.L, Intratubular and intracellular renin-angiotensin system in the kidney: a unifying perspective in blood pressure control, Clinical science (London, England : 1979), 2018, 132(13), 1383-1401.
  • Schweda, F, Salt feedback on the renin-angiotensin-aldosterone system, Pflugers Archiv : European journal of physiology, 2015, 467(3), 565-76.
  • Freeburg, P.B, Abrahamson, D.R, Dissecting the JGA: new functions for JG cells?, Regulatory, integrative and comparative physiology, 2004, 286(3), R449-50.
  • Martini, A.G, Danser A.H.J, Juxtaglomerular Cell Phenotypic Plasticity, High blood pressure & cardiovascular prevention: the official journal of the Italian Society of Hypertension, 2017.
  • Peti-Peterdi, J, Harris R.C, Macula densa sensing and signaling mechanisms of renin release, Journal of the American Society of Nephrology : JASN, 2010, 21(7), 1093-6.
  • Schweda, F, Friis, U, Wagner, C, Skott, O, Kurtz, A, Renin release, Physiology (Bethesda), 2007, 22, 310-9. 20. Sequeira Lopez, M.L, Pentz, E.S, Nomasa, T, Smithies, O, Gomez, R.A, Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened, Developmental cell, 2004, 6(5), 719-28.
  • Pentz, E.S, Moyano, M.A, Thornhill, B.A, Sequeira Lopez, M.L, Gomez, R.A, Ablation of renin-expressing juxtaglomerular cells results in a distinct kidney phenotype, American journal of physiology. Regulatory, integrative and comparative physiology, 2004, 286(3), R474-83.
  • Brunskill, E.W, Georgas, K, Rumballe, B, Little, M.H, Potter, S.S, Defining the molecular character of the developing and adult kidney podocyte, PLoS One, 2011, 6(9), e24640.
  • Friis, U.G, Madsen, K, Stubbe, J, Hansen, P.B, Svenningsen, P, Bie, P, et al., Regulation of renin secretion by renal juxtaglomerular cells, Pflugers Archive, 2013, 465(1), 25-37.
  • Kurtz, A, Renin release: sites, mechanisms, and control, Annual Review of Physiology, 2011, 73, 377-99. 25. Peti-Peterdi, J, Newly Stemming Functions of Macula Densa–Derived Prostanoids, Hypertension, 2015, 65(5), 987-988.
  • Vargas, S.L, Toma, I, Kang, J.J, Meer, E.J, Peti-Peterdi, J, Activation of the succinate receptor GPR91 in macula densa cells causes renin release, Journal of the American Society of Nephrology : JASN, 2009, 20(5), 1002-11.
  • Song, J, Wang, L, Fan, F, Wei, J, Zhang, J, Lu Y, Fu Y, Wang S, Juncos L.A, Liu R, Role of the Primary Cilia on the Macula Densa and Thick Ascending Limbs in Regulation of Sodium Excretion and Hemodynamics, Hypertension, 2017, 70(2), 324-333.
  • Rielle, J.C, Brown, D, Orci, L, Differences in glycocalyx composition between cells of the cortical thick ascending limb of Henle and the macula densa revealed by lectin-gold cytochemistry, The Anatomical record, 1987, 218(3), 243-8.
  • Komlosi, P, Bell, P.D, Zhang, Z.R, Tubuloglomerular feedback mechanisms in nephron segments beyond the macula densa, Current opinion in nephrology and hypertension, 2009, 18(1), 57-62.
  • Bell, P.D, Komlosi, P, Zhang, Z.-R, ATP as a mediator of macula densa cell signalling, Purinergic Signalling, 2009, 5(4), 461-471.
  • Sipos, A, Vargas S, Peti-Peterdi J, Direct demonstration of tubular fluid flow sensing by macula densa cells, American Journal of Physiology - Renal Physiology, 2010, 299(5), F1087-F1093.
  • Ibarra, M.E, Albertoni Borghese, M.F, Majowicz, M.P, Ortiz M.C, Loidl F, Rey‐Funes, M, Di Ciano, L.A, Ibarra, F.R, Concerted regulation of renal plasma flow and glomerular filtration rate by renal dopamine and NOS I in rats on high salt intake, Physiological Reports, 2017, 5(6).
  • Persson, A.E, Bachmann S, Constitutive nitric oxide synthesis in the kidney--functions at the juxtaglomerular apparatus, Acta physiologica Scandinavica, 2000, 169(4), 317-324.
  • Tojo, A, Gross, S.S, Zhang, L, Tisher, C.C, Schmidt, H.H, Wilcox, C.S, Madsen, K.M, Immunocytochemical localization of distinct isoforms of nitric oxide synthase in the juxtaglomerular apparatus of normal rat kidney, Journal of the American Society of Nephrology, 1994, 4(7), 1438-47.
  • Persson, A.E.G, Ollerstam, A, Liu, R, Brown, R, Mechanisms for macula densa cell release of renin, Acta Physiologica Scandinavica, 2004, 181(4), 471-474.
  • Wang, L, Shen, C, Liu, H, Wang, S, Chen, X, Roman, R.J, Juncos, L.A, Lu, Y, Wei, J, Zhang, J, Yip, K.P, Liu, R, Shear stress blunts tubuloglomerular feedback partially mediated by primary cilia and nitric oxide at the macula densa, American journal of physiology. Regulatory, integrative and comparative physiology, 2015, 309(7), R757-66.
  • Abou Alaiwi, W.A, Lo, S.T, Nauli, S.M, Primary cilia: highly sophisticated biological sensors, Sensors (Basel), 2009, 9(9), 7003-20.
  • Christensen, S.T, Pedersen, L.B, Schneider, L, Satir, P, Sensory cilia and integration of signal transduction in human health and disease, Traffic, 2007, 8(2), 97-109.
  • Gerdes, J.M, Davis, E.E, Katsanis, N, The vertebrate primary cilium in development, homeostasis, and disease, Cell, 2009, 137(1), 32-45.
  • Ke, Y.N, Yang, W.X, Primary cilium: an elaborate structure that blocks cell division?, Gene, 2014, 547(2), 175-85.
  • Prasad, R.M, Jin, X, Nauli, S.M, Sensing a sensor: identifying the mechanosensory function of primary cilia, Biosensors (Basel), 2014, 4(1), 47-62.
  • Verschuren, E.H.J, Castenmiller, C, Peters, D.J.M, Arjona, F.J, Bindels, R.J.M, Hoenderop, J.G.J, Sensing of tubular flow and renal electrolyte transport, Nature reviews. Nephrology, 2020, 16(6), 337-351.
  • Barker, A.R, Thomas, R, Dawe, H.R, Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development, Organogenesis, 2014, 10(1), 96-107.
  • Pazour, G.J, Witman, G.B, The vertebrate primary cilium is a sensory organelle, Current opinion in cell biology, 2003, 15(1), 105-10.
  • Satir, P, Pedersen, L.B, Christensen, S.T, The primary cilium at a glance, Journal of cell science, 2010, 123(Pt 4), 499-503.
  • Veland, I.R, Awan, A, Pedersen, L.B, Yoder, B.K, Christensen, S.T, Primary cilia and signaling pathways in mammalian development, health and disease, Nephron Physiology, 2009, 111(3), 39-53.
  • Venkatesh, D, Primary cilia, Journal of oral and maxillofacial pathology : JOMFP, 2017, 21(1), 8-10.
  • Hossain, D, Tsang, W.Y, The role of ubiquitination in the regulation of primary cilia assembly and disassembly, Seminars in cell & developmental biology, 2019, 93, 145-152.
  • Carroll, B, Korolchuk V.I, Nutrient sensing, growth and senescence, The FEBS journal, 2018, 285(11), 1948-1958. Christensen, S.T, Pedersen S.F, Satir P, Veland I.R, Schneider L, The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair, Current topics in developmental biology, 2008, 85, 261-301.
  • Goetz, S.C, Anderson, K.V, The primary cilium: a signalling centre during vertebrate development, Nature reviews, Genetics, 2010, 11(5), 331-44.
  • Malicki, J.J, Johnson, C.A, The Cilium: Cellular Antenna and Central Processing Unit, Trends in cell biology, 2017, 27(2), 126-140.
  • Muhammad, H, Rais, Y, Miosge, N, Ornan, E.M, The primary cilium as a dual sensor of mechanochemical signals in chondrocytes, Cellular and molecular life sciences : CMLS, 2012, 69(13), 2101-7.
  • Nauli, S.M, Jin, X, AbouAlaiwi, W.A, El-Jouni, W, Su, X, Zhou J, Non-motile primary cilia as fluid shear stress mechanosensors, Methods in enzymology, 2013, 525, 1-20.
  • Cortes, C.R, Metzis, V, Wicking, C, Unmasking the ciliopathies: craniofacial defects and the primary cilium, Wiley interdisciplinary reviews. Developmental biology, 2015, 4(6), 637-53.
  • Pala, R, Alomari, N, Nauli, S.M, Primary Cilium-Dependent Signaling Mechanisms, International journal of molecular sciences, 2017, 18(11).
  • Foerster, P, Daclin, M, Asm, S, Faucourt, M, Boletta, A, Genovesio, A, et al., mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis, Development, 2017, 144(2), 201-210.
  • Kirschen, G.W, Xiong, Q, Primary cilia as a novel horizon between neuron and environment, Neural regeneration research, 2017, 12(8), 1225-1230.
  • Diguet, N, Le Garrec, J.F, Lucchesi, T, Meilhac, S.M, Imaging and analyzing primary cilia in cardiac cells, Methods in cell biology, 2015, 127, 55-73.
  • Noda, K, Kitami, M, Kitami, K, Kaku, M, Komatsu, Y, Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development, Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(19), E2589-97.
  • Yuan, X, Yang, S, Primary Cilia and Intraflagellar Transport Proteins in Bone and Cartilage, Journal of dental research, 2016, 95(12), 1341-1349.
  • Cai, S, Bodle, J.C, Mathieu, P.S, Amos, A, Hamouda, M, Bernacki, S, et al., Primary cilia are sensors of electrical field stimulation to induce osteogenesis of human adipose-derived stem cells, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2017, 31(1), 346-355.
  • Hampl, M, Cela, P, Szabo-Rogers, H.L, Kunova Bosakova, M, Dosedelova, H, Krejci, P, Buchtova, M, Role of Primary Cilia in Odontogenesis, Journal of dental research, 2017, 96(9), 965-974.
  • Satir, P, CILIA: before and after, Cilia, 2017, 6, 1.
  • Sherpa, R.T, Atkinson, K.F, Ferreira, V.P, Nauli, S.M, Rapamycin increases length and mechanosensory function of primary cilia in renal epithelial and vascular endothelial cells, International education and research journal, 2016, 2(12), 91-97.
  • Wheway, G, Nazlamova, L, Hancock, J.T, Signaling through the Primary Cilium, Frontiers in cell and developmental biology, 2018, 6, 8.
  • Davis, E.E, Brueckner M., Katsanis N., The emerging complexity of the vertebrate cilium: new functional roles for an ancient organelle, Developmental cell, 2006, 11(1), 9-19.
  • .Rosenbaum, J.L, Witman, G.B, Intraflagellar transport, Nature reviews. Molecular cell biology, 2002, 3(11), 813-25.
  • Avalos, Y, Pena-Oyarzun, D, Budini, M, Morselli, E, Criollo, A, New Roles of the Primary Cilium in Autophagy, BioMed research international, 2017, 2017, 4367019.
  • Ko, J.Y, Functional Study of the Primary Cilia in ADPKD, Advances in experimental medicine and biology, 2016, 933, 45-57.
  • Sottiurai, V, Malvin R.L, The demonstration of cilia in canine macula densa cells, American Journal of Anatomy, 1972, 135(2), 281-6.
  • Norgaard, T, The ultrastructure of the macula densa during altered sodium intake. A morphometric study of the macula densa in the rabbit nephron, Acta pathologica, microbiologica, et immunologica Scandinavica. Section A, Pathology, 1982, 90(1), 67-73.
  • Karnovsky, M, A Formaldehyde-Glutaraldehyde Fixative of High Osmolality for Use in Electron Microscopy, Journal of Cell Biology, 1964, 27, 137-8A.
  • Reynolds, E.S, The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, Journal of Cell Biology, 1963, 17, 208-12.
  • Quaggin, S.E, Kreidberg, J.A, Development of the renal glomerulus: good neighbors and good fences, Development, 2008, 135(4), 609-20.
  • Vaughan, M.R, Quaggin, S.E, How do mesangial and endothelial cells form the glomerular tuft?, Journal of the American Society of Nephrology : JASN, 2008, 19(1), 24-33.
  • Lyons, K.M, Hogan, B.L, Robertson, E.J, Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development, Mechanisms of development, 1995, 50(1), 71-83.
  • Huang, J, Arsenault, M, Kann, M, Lopez-Mendez, C, Saleh, M, Wadowska, D, et al., The transcription factor Sry-related HMG box-4 (SOX4) is required for normal renal development in vivo, Developmental dynamics : an official publication of the American Association of Anatomists, 2013, 242(6), 790-9.
  • Kobayashi, A, Valerius, M.T, Mugford, J.W, Carroll, T.J, Self M, Oliver, G, McMahon, A.P, Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development, Cell stem cell, 2008, 3(2), 169-81.
  • Davies, J.A, Morphogenesis of the metanephric kidney, The Scientific World Journal, 2002, 2, 1937-50.
  • Goto, S, Yaoita, E, Matsunami, H, Kondo, D, Yamamoto, T, Kawasaki, K, Arakawa, M, Kihara, I, Involvement of R-cadherin in the early stage of glomerulogenesis, Journal of the American Society of Nephrology : JASN, 1998, 9(7), 1234-41.
  • Petermann, A, Hiromura, K, Pippin, J, Blonski, M, Couser, W.G, Kopp, J, Mundel, P, Shankland, S.J, Differential expression of d-type cyclins in podocytes in vitro and in vivo, The American journal of pathology, 2004, 164(4), 1417-24.
  • Gomez, R.A, Belyea, B, Medrano, S, Pentz, E.S, Sequeira-Lopez, M.L, Fate and plasticity of renin precursors in development and disease, Pediatric nephrology (Berlin, Germany), 2014, 29(4), 721-6.
  • Lin, E.E, Sequeira-Lopez, M.L, Gomez, R.A, RBP-J in FOXD1+ renal stromal progenitors is crucial for the proper development and assembly of the kidney vasculature and glomerular mesangial cells, American journal of physiology, Renal physiology, 2014, 306(2), F249-58.
  • Sequeira Lopez, M.L, Gomez, R.A, Development of the renal arterioles, Journal of the American Society of Nephrology : JASN, 2011, 22(12), 2156-65.
  • Sequeira-Lopez, M.L, Nagalakshmi, V.K, Li, M, Sigmund, C.D, Gomez, R.A, Vascular versus tubular renin: role in kidney development, American journal of physiology. Regulatory, integrative and comparative physiology, 2015, 309(6), R650-7.
  • Sequeira Lopez, M.L, Pentz, E.S, Robert, B, Abrahamson, D.R, Gomez, R.A, Embryonic origin and lineage of juxtaglomerular cells, American journal of physiology. Renal physiology, 2001, 281(2), F345-56. 88. Gomez, R.A, Lopez, M.L, Plasticity of Renin Cells in the Kidney Vasculature, Current hypertension reports, 2017, 19(2), 14.
  • Lichtnekert, J., Kaverina, N.V, Eng, D.G, Gross, K.W, Kutz J.N, Pippin, J.W, Shankland, S.J, Renin-Angiotensin-Aldosterone System Inhibition Increases Podocyte Derivation from Cells of Renin Lineage, Journal of the American Society of Nephrology : JASN, 2016, 27(12), 3611-3627.
  • McClelland, A.D, Lichtnekert, J, Eng, D.G, Pippin, J.W, Gross K.W, Gharib, S.A, et al., Charting the transcriptional landscape of cells of renin lineage following podocyte depletion, PLoS One, 2017, 12(12), e0189084.
  • Pan, L, Gross, K.W, Transcriptional regulation of renin: an update, Hypertension, 2005, 45(1), 3-8.
  • Steppan, D, Zugner, A, Rachel, R, Kurtz, A, Structural analysis suggests that renin is released by compound exocytosis, Kidney international, 2013, 83(2), 233-41.
  • Pratt, R.E, Carleton, J.E, Richie, J.P, Heusser, C, Dzau, V.J, Human renin biosynthesis and secretion in normal and ischemic kidneys, Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(22), 7837-40.
  • Izawa, I, Goto, H, Kasahara, K, Inagaki, M, Current topics of functional links between primary cilia and cell cycle, Cilia, 2015, 4, 12.
  • Maharjan, Y, Lee, J.N, Kwak, S, Lim, H, Dutta, R.K, Liu, Z.Q, et al., Autophagy alteration prevents primary cilium disassembly in RPE1 cells, Biochemical and biophysical research communications, 2018, 500(2), 242-248.
  • Marra, A.N, Li, Y, Wingert, R.A, Antennas of organ morphogenesis: the roles of cilia in vertebrate kidney development, Genesis, 2016, 54(9), 457-69.
  • Deane, J.A, Ricardo, S.D, Emerging roles for renal primary cilia in epithelial repair, International review of cell and molecular biology, 2012, 293,169-93.
  • Han, S.J, Jung, J.K, Im, S.S, Lee, S.R, Jang, B.C, Park, K.M, Kim, J.I, Deficiency of primary cilia in kidney epithelial cells induces epithelial to mesenchymal transition, Biochemical and biophysical research communications, 2018, 496(2), 450-454.
  • Jamal, M.H, Nunes, A.C.F, Vaziri, N.D, Ramchandran, R, Bacallao, R.L, Nauli, A.M, et al., Rapamycin treatment correlates changes in primary cilia expression with cell cycle regulation in epithelial cells, Biochemical pharmacology, 2020, 178, 114056.
  • Kobayashi, T, Dynlacht, B.D, Regulating the transition from centriole to basal body, The Journal of cell biology, 2011, 193(3), 435-444. 101. Sanchez, I, Dynlacht, B.D, Cilium assembly and disassembly, Nature Cell Biology, 2016, 18(7), 711-7.
Toplam 96 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Beyhan Gürcü 0000-0001-7667-7155

Sabire Karaçalı 0000-0002-5793-5478

Yayımlanma Tarihi 30 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 3

Kaynak Göster

APA Gürcü, B., & Karaçalı, S. (2021). Differentiation of Juxtaglomerular Apparatus Cells in Developing Nephrons in BALB /c Type Mouse Embryos. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 8(3), 395-404. https://doi.org/10.34087/cbusbed.827212
AMA Gürcü B, Karaçalı S. Differentiation of Juxtaglomerular Apparatus Cells in Developing Nephrons in BALB /c Type Mouse Embryos. CBU-SBED. Eylül 2021;8(3):395-404. doi:10.34087/cbusbed.827212
Chicago Gürcü, Beyhan, ve Sabire Karaçalı. “Differentiation of Juxtaglomerular Apparatus Cells in Developing Nephrons in BALB /C Type Mouse Embryos”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8, sy. 3 (Eylül 2021): 395-404. https://doi.org/10.34087/cbusbed.827212.
EndNote Gürcü B, Karaçalı S (01 Eylül 2021) Differentiation of Juxtaglomerular Apparatus Cells in Developing Nephrons in BALB /c Type Mouse Embryos. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8 3 395–404.
IEEE B. Gürcü ve S. Karaçalı, “Differentiation of Juxtaglomerular Apparatus Cells in Developing Nephrons in BALB /c Type Mouse Embryos”, CBU-SBED, c. 8, sy. 3, ss. 395–404, 2021, doi: 10.34087/cbusbed.827212.
ISNAD Gürcü, Beyhan - Karaçalı, Sabire. “Differentiation of Juxtaglomerular Apparatus Cells in Developing Nephrons in BALB /C Type Mouse Embryos”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8/3 (Eylül 2021), 395-404. https://doi.org/10.34087/cbusbed.827212.
JAMA Gürcü B, Karaçalı S. Differentiation of Juxtaglomerular Apparatus Cells in Developing Nephrons in BALB /c Type Mouse Embryos. CBU-SBED. 2021;8:395–404.
MLA Gürcü, Beyhan ve Sabire Karaçalı. “Differentiation of Juxtaglomerular Apparatus Cells in Developing Nephrons in BALB /C Type Mouse Embryos”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, c. 8, sy. 3, 2021, ss. 395-04, doi:10.34087/cbusbed.827212.
Vancouver Gürcü B, Karaçalı S. Differentiation of Juxtaglomerular Apparatus Cells in Developing Nephrons in BALB /c Type Mouse Embryos. CBU-SBED. 2021;8(3):395-404.