Derleme
BibTex RIS Kaynak Göster

Serebral Palside İskelet Kası ve Amino Asit Profilleri

Yıl 2024, Cilt: 11 Sayı: 2, 330 - 336, 28.06.2024
https://doi.org/10.34087/cbusbed.1296353

Öz

Serebral palsi, kişinin hareket kabiliyetini, stabilitesini ve duruşunu etkileyen, günlük yaşam aktivitelerinde kısıtlamalara neden olan nörolojik bir hastalıktır. Dünya’da yaklaşık 2-2,5/1000 canlı doğumda görülen hastalık, progresif değildir ve prenatal, natal ve postnatal dönemlerde görülen risk faktörlerinden dolayı gelişmektedir. Klinik bulgular ve semptomlar genellikle 18-24 aylıkken ortaya çıkar ve hastanın vücudundaki tutulum, kas fonksiyonları, beceri ve kısıtlılıklara göre alt tiplere ayrılmaktadır. Birçok alt tipi bulunan serebral palsi hastalığı sonucu kas yapısında azalmış kas boyutu/kesit alanı, azalmış kontraktil doku/bağ dokusu, aşırı gerilmiş sarkomerler ve sarkomerik titin kaybı gibi farklılıklar görülmektedir. İskelet kası, enerjiyi proteinler şeklinde depolamakta ve bu nedenle proteinlerin yapı taşı olan amino asitler kas için önemli bir molekül haline gelmektedir. Serebral palsili bireylerin hem malnütrisyondan korunması hem de kas fonksiyonlarının düzenlenmesi için birçok çeşidi bulunan amino asitlerin araştırılması önem arz etmektedir. Bu derlemede serebral palside görülen iskelet kası değişiklikleri ve amino asit profillerinin iskelet kası üzerindeki etkilerini incelemek ve genel bir bakış açısı oluşturmak hedeflenmiştir.

Kaynakça

  • 1. Bax, M, Goldstein, M, Rosenbaum, P, Leviton, A, Paneth, N, Dan, B, Jacobsson, B, Damiano, D. Proposed definition and classification of cerebral palsy, April 2005. Developmental Medicine & Child Neurology, 2005,47(8),571–576.
  • 2. Wolfson, R. L, Sabatini, D. M. The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metabolism, 2017,26(2),301–309.
  • 3. Alpay Savasan, Z, Yilmaz, A, Ugur, Z, Aydas, B, Bahado-Singh, R, Graham, S. Metabolomic profiling of cerebral palsy brain tissue reveals novel central biomarkers and biochemical pathways associated with the disease: a pilot study. Metabolites, 2019,9(2),27.
  • 4. Tel Adıgüzel, K. Serebral Palsili Çocuklarda Beslenme Durumlarının Saptanması. Hacettepe Üniversitesi, Sağlık Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2013; 18.
  • 5. Sankar, C, Mundkur, N. Cerebral palsy-definition, classification, etiology and early diagnosis. The Indian Journal of Pediatrics, 2005,72(10),865–868.
  • 6. MacLennan, A. H, Thompson, S. C, Gecz, J. Cerebral palsy: causes, pathways, and the role of genetic variants. American Journal of Obstetrics and Gynecology, 2015,213(6),779–788.
  • 7. Paul, S, Nahar, A, Bhagawati, M, Kunwar, A. J. A review on recent advances of cerebral palsy. Oxidative Medicine and Cellular Longevity, 2022,1–20.
  • 8. Velde, A, Morgan, C, Novak, I, Tantsis, E, Badawi, N. Early diagnosis and classification of cerebral palsy: an historical perspective and barriers to an early diagnosis. Journal of Clinical Medicine, 2019,8(10),1599.
  • 9. Himmelmann, K, McManus, V, Hagberg, G, Uvebrant, P, Krageloh-Mann, I, Cans, C. Dyskinetic cerebral palsy in Europe: trends in prevalence and severity. Archives of Disease in Childhood, 2009,94(12),921–926.
  • 10. McDowell, B. The gross motor function classification system - expanded and revised. Developmental Medicine & Child Neurology, 2008,50(10),725–725.
  • 11. Eyles, J. P, Murphy, N. J, Virk, S, Spiers, L, Molnar, R, O'Donnell, J, Singh, P, Tran, P, Randhawa, S, O'Sullivan, M, Hunter, D.J. Can a hip brace ımprove short-term hip-related quality of life for people with femoroacetabular ımpingement and acetabular labral tears: an exploratory randomized trial. Clinical Journal of Sport Medicine, 2022,32(3),e243–e250.
  • 12. Serbest, K. Structure and biomechanics of skeletal muscle. Academic Platform Journal of Engineering and Science, 2014,2(3),41–51.
  • 13. Al-Garni, S, Derbala, S, Saad, H, Maaty, A. I. Developmental anomalies and associated impairments in Saudi children with cerebral palsy: a registry-based, multicenter study. Egyptian Rheumatology and Rehabilitation, 2021,48(1),9.
  • 14. Howard, J. J, Herzog, W. Skeletal muscle in cerebral palsy: from belly to myofibril. Frontiers in Neurology, 2021,12(620852),1–15.
  • 15. Frontera, W. R, Ochala, J. Skeletal muscle: a brief review of structure and function. Calcified Tissue International, 2015,96(3),183–195.
  • 16. Noble, J. J, Fry, N. R, Lewis, A. P, Keevil, S. F, Gough, M, Shortland, A. P. Lower limb muscle volumes in bilateral spastic cerebral palsy. Brain and Development, 2014a,36(4),294–300.
  • 17. Booth, C. M, Cortina-Borja, M. J. F, Theologis, T. N. Collagen accumulation in muscles of children with cerebral palsy and correlation with severity of spasticity. Developmental Medicine & Child Neurology, 2007,43(5),314–320.
  • 18. Noble, J. J, Charles-Edwards, G. D, Keevil, S. F, Lewis, A. P, Gough, M., Shortland, A. P. Intramuscular fat in ambulant young adults with bilateral spastic cerebral palsy. BMC Musculoskeletal Disorders, 2014b,15(1),236.
  • 19. Leonard, T. R, Howard, J. J, Larkin-Kaiser, K, Joumaa, V, Logan, K, Orlik, B, El-Hawary, R, Gauthier, L, Herzog, W. Stiffness of hip adductor myofibrils is decreased in children with spastic cerebral palsy. Journal of Biomechanics, 2019,87,100–106.
  • 20. Herzog, W. Why are muscles strong, and why do they require little energy in eccentric action? Journal of Sport and Health Science, 2018,7(3),255–264.
  • 21. Joumaa, V, Bertrand, F, Liu, S, Poscente, S, Herzog, W. Does partial titin degradation affect sarcomere length nonuniformities and force in active and passive myofibrils? American Journal of Physiology-Cell Physiology, 2018,315(3),C310–C318.
  • 22. Herskind, A, Ritterband-Rosenbaum, A, Willerslev-Olsen, M, Lorentzen, J, Hanson, L, Lichtwark, G, Nielsen, J.B. Muscle growth is reduced in 15-month-old children with cerebral palsy. Developmental Medicine & Child Neurology, 2016,58(5),485–491.
  • 23. Kamei, Y, Hatazawa, Y, Uchitomi, R, Yoshimura, R, Miura, S. Regulation of skeletal muscle function by amino acids. Nutrients, 2020,12(1),261.
  • 24. Hu, C, Li, F, Duan, Y, Kong, X, Yan, Y, Deng, J, Tan, C, Wu, G, Yin, Y. Leucine alone or in combination with glutamic acid, but not with arginine, increases biceps femoris muscle and alters muscle AA transport and concentrations in fattening pigs. Journal of Animal Physiology and Animal Nutrition, 2019a,103(3),791–800.
  • 25. Hu, C. J, Li, F. N, Duan, Y. H, Zhang, T, Li H.W, Yin, Y.L, Wu, G.Y, Kong, X.F. Dietary supplementation with arginine and glutamic acid alters the expression of amino acid transporters in skeletal muscle of growing pigs. Amino Acids, 2019b,51(7),1081–1092.
  • 26. Noh, K.K, Chung, K.W, Choi, Y.J, Park, M.H, Jang, E.J, Park, C.H, Yoon, C, Kim, N.D, Kim, M.K, Chung, H.Y. beta-Hydroxy beta-methylbutyrate improves dexamethasone-induced muscle atrophy by modulating the muscle degradation pathway in SD rat. PLoS ONE 2014, 9, e102947.
  • 27. Rempel, G. The ımportance of good nutrition in children with cerebral palsy. Physical Medicine and Rehabilitation Clinics of North America, 2015,26(1),39–56.
  • 28. Londhe, P, Guttridge, D. C. Inflammation induced loss of skeletal muscle. Bone, 2015,80,131–142.
  • 29. Churchward-Venne T.A, Breen L, Phillips S.M. Alterations in human muscle protein metabolism with aging: protein and exercise as countermeasures to offset sarcopenia. Biofactors 2014;40:199–205.
  • 30. Kato, H, Miura, K, Nakano, S, Suzuki, K, Bannai, M, Inoue, Y. Leucine-enriched essential amino acids attenuate inflammation in rat muscle and enhance muscle repair after eccentric contraction. Amino Acids, 2016,48(9),2145–2155.
  • 31. Zemel, M. B, Bruckbauer, A. Effects of a leucine and pyridoxine-containing nutraceutical on fat oxidation, and oxidative and ınflammatory stress in overweight and obese subjects. Nutrients, 2012,4(6),529–541.
  • 32. Theis, N, Brown, M. A, Wood, P, Waldron, M. Leucine supplementation ıncreases muscle strength and volume, reduces ınflammation, and affects wellbeing in adults and adolescents with cerebral palsy. The Journal of Nutrition, 2021,151(1),59–64.
  • 33. Mamerow, M. M, Mettler, J. A, English, K. L, Casperson, S.L, Arentson-Lantz, E, Sheffield-Moore, M, Layman, D.K, Paddon-Jones, D. Dietary protein distribution positively ınfluences 24-h muscle protein synthesis in healthy adults. The Journal of Nutrition, 2014,144(6),876–880.
  • 34. Tieland, M, Borgonjen-Van den Berg, K, Van Loon, L, de Groot, L. Dietary protein ıntake in dutch elderly people: a focus on protein sources. Nutrients, 2015,7(12),9697–9706.
  • 35. Lacerda, D. C, Manhães-de-Castro, R, Gouveia, H. J. C. B, Tourneur, Y, Costa de Santana, B.J, Assunção Santos, R.E, Olivier-Coq, J, Ferraz-Pereira, K.N, Toscano, A.E. Treatment with the essential amino acid L-tryptophan reduces masticatory impairments in experimental cerebral palsy. Nutritional Neuroscience, 2021,24(12),927–939.
  • 36. Tinkov, A. A, Skalnaya, M. G, Skalny, A. V. Serum trace element and amino acid profile in children with cerebral palsy. Journal of Trace Elements in Medicine and Biology, 2021,64,126685.

Skeletal Muscle and Amino Acid Profiles in Cerebral Palsy

Yıl 2024, Cilt: 11 Sayı: 2, 330 - 336, 28.06.2024
https://doi.org/10.34087/cbusbed.1296353

Öz

Cerebral palsy is a neurological disease that affects a person's mobility, stability and postüre, causing restrictions on daily living activities. The disease, which occurs in approximately 2-2.5/1000 live births on Earth, is not progressive and develops due to risk factors seen during prenatal, natal and postnatal periods. Clinical findings and symptoms usually occur at 18-24 months of age and are divided into subtypes based on the eclipse, muscle function, skill and limitations in the patient's body. As a result of cerebral palsy, which has many subtypes, differences in muscle structure such as decreased muscle size/section area, decreased contractile tissue/connective tissue, overstretched sarcomeres and loss of sarcomeric titin are seen. Skeletal muscle stores energy in the form of proteins, and therefore amino acids, which are the building blocks of proteins, become an important molecule for muscle. It is important to investigate amino acids, which have many variants to protect cerebral palsy individuals from both malnutrition and regulate muscle function. This review aimed to examine the effects of skeletal muscle changes and amino acid profiles seen in cerebral palsy on skeletal muscle and to establish an overview.

Kaynakça

  • 1. Bax, M, Goldstein, M, Rosenbaum, P, Leviton, A, Paneth, N, Dan, B, Jacobsson, B, Damiano, D. Proposed definition and classification of cerebral palsy, April 2005. Developmental Medicine & Child Neurology, 2005,47(8),571–576.
  • 2. Wolfson, R. L, Sabatini, D. M. The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metabolism, 2017,26(2),301–309.
  • 3. Alpay Savasan, Z, Yilmaz, A, Ugur, Z, Aydas, B, Bahado-Singh, R, Graham, S. Metabolomic profiling of cerebral palsy brain tissue reveals novel central biomarkers and biochemical pathways associated with the disease: a pilot study. Metabolites, 2019,9(2),27.
  • 4. Tel Adıgüzel, K. Serebral Palsili Çocuklarda Beslenme Durumlarının Saptanması. Hacettepe Üniversitesi, Sağlık Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2013; 18.
  • 5. Sankar, C, Mundkur, N. Cerebral palsy-definition, classification, etiology and early diagnosis. The Indian Journal of Pediatrics, 2005,72(10),865–868.
  • 6. MacLennan, A. H, Thompson, S. C, Gecz, J. Cerebral palsy: causes, pathways, and the role of genetic variants. American Journal of Obstetrics and Gynecology, 2015,213(6),779–788.
  • 7. Paul, S, Nahar, A, Bhagawati, M, Kunwar, A. J. A review on recent advances of cerebral palsy. Oxidative Medicine and Cellular Longevity, 2022,1–20.
  • 8. Velde, A, Morgan, C, Novak, I, Tantsis, E, Badawi, N. Early diagnosis and classification of cerebral palsy: an historical perspective and barriers to an early diagnosis. Journal of Clinical Medicine, 2019,8(10),1599.
  • 9. Himmelmann, K, McManus, V, Hagberg, G, Uvebrant, P, Krageloh-Mann, I, Cans, C. Dyskinetic cerebral palsy in Europe: trends in prevalence and severity. Archives of Disease in Childhood, 2009,94(12),921–926.
  • 10. McDowell, B. The gross motor function classification system - expanded and revised. Developmental Medicine & Child Neurology, 2008,50(10),725–725.
  • 11. Eyles, J. P, Murphy, N. J, Virk, S, Spiers, L, Molnar, R, O'Donnell, J, Singh, P, Tran, P, Randhawa, S, O'Sullivan, M, Hunter, D.J. Can a hip brace ımprove short-term hip-related quality of life for people with femoroacetabular ımpingement and acetabular labral tears: an exploratory randomized trial. Clinical Journal of Sport Medicine, 2022,32(3),e243–e250.
  • 12. Serbest, K. Structure and biomechanics of skeletal muscle. Academic Platform Journal of Engineering and Science, 2014,2(3),41–51.
  • 13. Al-Garni, S, Derbala, S, Saad, H, Maaty, A. I. Developmental anomalies and associated impairments in Saudi children with cerebral palsy: a registry-based, multicenter study. Egyptian Rheumatology and Rehabilitation, 2021,48(1),9.
  • 14. Howard, J. J, Herzog, W. Skeletal muscle in cerebral palsy: from belly to myofibril. Frontiers in Neurology, 2021,12(620852),1–15.
  • 15. Frontera, W. R, Ochala, J. Skeletal muscle: a brief review of structure and function. Calcified Tissue International, 2015,96(3),183–195.
  • 16. Noble, J. J, Fry, N. R, Lewis, A. P, Keevil, S. F, Gough, M, Shortland, A. P. Lower limb muscle volumes in bilateral spastic cerebral palsy. Brain and Development, 2014a,36(4),294–300.
  • 17. Booth, C. M, Cortina-Borja, M. J. F, Theologis, T. N. Collagen accumulation in muscles of children with cerebral palsy and correlation with severity of spasticity. Developmental Medicine & Child Neurology, 2007,43(5),314–320.
  • 18. Noble, J. J, Charles-Edwards, G. D, Keevil, S. F, Lewis, A. P, Gough, M., Shortland, A. P. Intramuscular fat in ambulant young adults with bilateral spastic cerebral palsy. BMC Musculoskeletal Disorders, 2014b,15(1),236.
  • 19. Leonard, T. R, Howard, J. J, Larkin-Kaiser, K, Joumaa, V, Logan, K, Orlik, B, El-Hawary, R, Gauthier, L, Herzog, W. Stiffness of hip adductor myofibrils is decreased in children with spastic cerebral palsy. Journal of Biomechanics, 2019,87,100–106.
  • 20. Herzog, W. Why are muscles strong, and why do they require little energy in eccentric action? Journal of Sport and Health Science, 2018,7(3),255–264.
  • 21. Joumaa, V, Bertrand, F, Liu, S, Poscente, S, Herzog, W. Does partial titin degradation affect sarcomere length nonuniformities and force in active and passive myofibrils? American Journal of Physiology-Cell Physiology, 2018,315(3),C310–C318.
  • 22. Herskind, A, Ritterband-Rosenbaum, A, Willerslev-Olsen, M, Lorentzen, J, Hanson, L, Lichtwark, G, Nielsen, J.B. Muscle growth is reduced in 15-month-old children with cerebral palsy. Developmental Medicine & Child Neurology, 2016,58(5),485–491.
  • 23. Kamei, Y, Hatazawa, Y, Uchitomi, R, Yoshimura, R, Miura, S. Regulation of skeletal muscle function by amino acids. Nutrients, 2020,12(1),261.
  • 24. Hu, C, Li, F, Duan, Y, Kong, X, Yan, Y, Deng, J, Tan, C, Wu, G, Yin, Y. Leucine alone or in combination with glutamic acid, but not with arginine, increases biceps femoris muscle and alters muscle AA transport and concentrations in fattening pigs. Journal of Animal Physiology and Animal Nutrition, 2019a,103(3),791–800.
  • 25. Hu, C. J, Li, F. N, Duan, Y. H, Zhang, T, Li H.W, Yin, Y.L, Wu, G.Y, Kong, X.F. Dietary supplementation with arginine and glutamic acid alters the expression of amino acid transporters in skeletal muscle of growing pigs. Amino Acids, 2019b,51(7),1081–1092.
  • 26. Noh, K.K, Chung, K.W, Choi, Y.J, Park, M.H, Jang, E.J, Park, C.H, Yoon, C, Kim, N.D, Kim, M.K, Chung, H.Y. beta-Hydroxy beta-methylbutyrate improves dexamethasone-induced muscle atrophy by modulating the muscle degradation pathway in SD rat. PLoS ONE 2014, 9, e102947.
  • 27. Rempel, G. The ımportance of good nutrition in children with cerebral palsy. Physical Medicine and Rehabilitation Clinics of North America, 2015,26(1),39–56.
  • 28. Londhe, P, Guttridge, D. C. Inflammation induced loss of skeletal muscle. Bone, 2015,80,131–142.
  • 29. Churchward-Venne T.A, Breen L, Phillips S.M. Alterations in human muscle protein metabolism with aging: protein and exercise as countermeasures to offset sarcopenia. Biofactors 2014;40:199–205.
  • 30. Kato, H, Miura, K, Nakano, S, Suzuki, K, Bannai, M, Inoue, Y. Leucine-enriched essential amino acids attenuate inflammation in rat muscle and enhance muscle repair after eccentric contraction. Amino Acids, 2016,48(9),2145–2155.
  • 31. Zemel, M. B, Bruckbauer, A. Effects of a leucine and pyridoxine-containing nutraceutical on fat oxidation, and oxidative and ınflammatory stress in overweight and obese subjects. Nutrients, 2012,4(6),529–541.
  • 32. Theis, N, Brown, M. A, Wood, P, Waldron, M. Leucine supplementation ıncreases muscle strength and volume, reduces ınflammation, and affects wellbeing in adults and adolescents with cerebral palsy. The Journal of Nutrition, 2021,151(1),59–64.
  • 33. Mamerow, M. M, Mettler, J. A, English, K. L, Casperson, S.L, Arentson-Lantz, E, Sheffield-Moore, M, Layman, D.K, Paddon-Jones, D. Dietary protein distribution positively ınfluences 24-h muscle protein synthesis in healthy adults. The Journal of Nutrition, 2014,144(6),876–880.
  • 34. Tieland, M, Borgonjen-Van den Berg, K, Van Loon, L, de Groot, L. Dietary protein ıntake in dutch elderly people: a focus on protein sources. Nutrients, 2015,7(12),9697–9706.
  • 35. Lacerda, D. C, Manhães-de-Castro, R, Gouveia, H. J. C. B, Tourneur, Y, Costa de Santana, B.J, Assunção Santos, R.E, Olivier-Coq, J, Ferraz-Pereira, K.N, Toscano, A.E. Treatment with the essential amino acid L-tryptophan reduces masticatory impairments in experimental cerebral palsy. Nutritional Neuroscience, 2021,24(12),927–939.
  • 36. Tinkov, A. A, Skalnaya, M. G, Skalny, A. V. Serum trace element and amino acid profile in children with cerebral palsy. Journal of Trace Elements in Medicine and Biology, 2021,64,126685.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Birinci Basamak Sağlık Hizmetleri, Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Sevde Nur Olgun 0000-0002-4982-5244

Emre Manisalı 0000-0002-7342-4854

Fatma Çelik 0000-0002-7553-8687

Yayımlanma Tarihi 28 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 2

Kaynak Göster

APA Olgun, S. N., Manisalı, E., & Çelik, F. (2024). Serebral Palside İskelet Kası ve Amino Asit Profilleri. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 11(2), 330-336. https://doi.org/10.34087/cbusbed.1296353
AMA Olgun SN, Manisalı E, Çelik F. Serebral Palside İskelet Kası ve Amino Asit Profilleri. CBU-SBED. Haziran 2024;11(2):330-336. doi:10.34087/cbusbed.1296353
Chicago Olgun, Sevde Nur, Emre Manisalı, ve Fatma Çelik. “Serebral Palside İskelet Kası Ve Amino Asit Profilleri”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 11, sy. 2 (Haziran 2024): 330-36. https://doi.org/10.34087/cbusbed.1296353.
EndNote Olgun SN, Manisalı E, Çelik F (01 Haziran 2024) Serebral Palside İskelet Kası ve Amino Asit Profilleri. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 11 2 330–336.
IEEE S. N. Olgun, E. Manisalı, ve F. Çelik, “Serebral Palside İskelet Kası ve Amino Asit Profilleri”, CBU-SBED, c. 11, sy. 2, ss. 330–336, 2024, doi: 10.34087/cbusbed.1296353.
ISNAD Olgun, Sevde Nur vd. “Serebral Palside İskelet Kası Ve Amino Asit Profilleri”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 11/2 (Haziran 2024), 330-336. https://doi.org/10.34087/cbusbed.1296353.
JAMA Olgun SN, Manisalı E, Çelik F. Serebral Palside İskelet Kası ve Amino Asit Profilleri. CBU-SBED. 2024;11:330–336.
MLA Olgun, Sevde Nur vd. “Serebral Palside İskelet Kası Ve Amino Asit Profilleri”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, c. 11, sy. 2, 2024, ss. 330-6, doi:10.34087/cbusbed.1296353.
Vancouver Olgun SN, Manisalı E, Çelik F. Serebral Palside İskelet Kası ve Amino Asit Profilleri. CBU-SBED. 2024;11(2):330-6.