Research Article
BibTex RIS Cite
Year 2019, , 35 - 42, 01.02.2019
https://doi.org/10.31801/cfsuasmas.443587

Abstract

References

  • Altun, I., Al Arifi, N., Jleli M., Lashin, A., Samet, B., A new concept of (α-F_{d})-contraction on quasi metric space, J. Nonlinear Sci. Appl., 9 (2016), no. 5, 3354--3361.
  • Cosentino,M., Vetro, P., Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat, 28 (2014), 715--722.
  • Hussain, N., Vetro,C., Vetro,F., Fixed point results for α-implicit contractions with application to integral equations, Nonlinear Anal. Model. Control, 21 (2016), 362--378.
  • Karapınar, E., Samet, B., Generalized α-ψ-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012 (2012), 17 pages.
  • Kumam, P., Vetro, C., Vetro, F., Fixed points for weak α-ψ-contractions in partial metric spaces, Abstr. Appl. Anal., 2013 (2013), 9 pages.
  • Künzi, H.P. A., Vajner, V., Weighted quasi-metrics, Ann. New York Acad. Sci., 728 (1994), 64--67.
  • Mınak, G., Olgun, M., Altun, I., A new approach to fixed point theorems for multivalued contractive maps, Carpathian J. Math., 31 (2015), 241--248.
  • Reilly, I. L., Subrahmanyam, P. V., Vamanamurthy, M. K., Cauchy sequences in quasi- pseudo-metric spaces, Monatsh. Math., 93 (1982), 127--140. 1.1, 1, 1.2,
  • Romaguera, S., Left K-completeness in quasi-metric spaces, Math. Nachr., 157 (1992), 15--23. SVV : Samet, B., Vetro,C., Vetro, P., Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal., 75 (2012), 2154--2165.
  • Wardowski, D., Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 6 pages.
  • Wardowski, D., Van Dung, N., Fixed points of F-weak contractions on complete metric spaces, Demonstr. Math., 47 (2014), 146--155.

Generalization of (α-F_{d})--contraction on quasi--metric space

Year 2019, , 35 - 42, 01.02.2019
https://doi.org/10.31801/cfsuasmas.443587

Abstract

In this paper, we introduce the concept of generalized (α-F_{d})-contraction and give some fixed point results in quasi metric spaces with different types of completeness.

References

  • Altun, I., Al Arifi, N., Jleli M., Lashin, A., Samet, B., A new concept of (α-F_{d})-contraction on quasi metric space, J. Nonlinear Sci. Appl., 9 (2016), no. 5, 3354--3361.
  • Cosentino,M., Vetro, P., Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat, 28 (2014), 715--722.
  • Hussain, N., Vetro,C., Vetro,F., Fixed point results for α-implicit contractions with application to integral equations, Nonlinear Anal. Model. Control, 21 (2016), 362--378.
  • Karapınar, E., Samet, B., Generalized α-ψ-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012 (2012), 17 pages.
  • Kumam, P., Vetro, C., Vetro, F., Fixed points for weak α-ψ-contractions in partial metric spaces, Abstr. Appl. Anal., 2013 (2013), 9 pages.
  • Künzi, H.P. A., Vajner, V., Weighted quasi-metrics, Ann. New York Acad. Sci., 728 (1994), 64--67.
  • Mınak, G., Olgun, M., Altun, I., A new approach to fixed point theorems for multivalued contractive maps, Carpathian J. Math., 31 (2015), 241--248.
  • Reilly, I. L., Subrahmanyam, P. V., Vamanamurthy, M. K., Cauchy sequences in quasi- pseudo-metric spaces, Monatsh. Math., 93 (1982), 127--140. 1.1, 1, 1.2,
  • Romaguera, S., Left K-completeness in quasi-metric spaces, Math. Nachr., 157 (1992), 15--23. SVV : Samet, B., Vetro,C., Vetro, P., Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal., 75 (2012), 2154--2165.
  • Wardowski, D., Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 6 pages.
  • Wardowski, D., Van Dung, N., Fixed points of F-weak contractions on complete metric spaces, Demonstr. Math., 47 (2014), 146--155.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Özlem Acar This is me 0000-0001-6052-4357

Publication Date February 1, 2019
Submission Date May 31, 2017
Acceptance Date July 13, 2018
Published in Issue Year 2019

Cite

APA Acar, Ö. (2019). Generalization of (α-F_{d})--contraction on quasi--metric space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 35-42. https://doi.org/10.31801/cfsuasmas.443587
AMA Acar Ö. Generalization of (α-F_{d})--contraction on quasi--metric space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):35-42. doi:10.31801/cfsuasmas.443587
Chicago Acar, Özlem. “Generalization of (α-F_{d})--Contraction on Quasi--Metric Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 35-42. https://doi.org/10.31801/cfsuasmas.443587.
EndNote Acar Ö (February 1, 2019) Generalization of (α-F_{d})--contraction on quasi--metric space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 35–42.
IEEE Ö. Acar, “Generalization of (α-F_{d})--contraction on quasi--metric space”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 35–42, 2019, doi: 10.31801/cfsuasmas.443587.
ISNAD Acar, Özlem. “Generalization of (α-F_{d})--Contraction on Quasi--Metric Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 35-42. https://doi.org/10.31801/cfsuasmas.443587.
JAMA Acar Ö. Generalization of (α-F_{d})--contraction on quasi--metric space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:35–42.
MLA Acar, Özlem. “Generalization of (α-F_{d})--Contraction on Quasi--Metric Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 35-42, doi:10.31801/cfsuasmas.443587.
Vancouver Acar Ö. Generalization of (α-F_{d})--contraction on quasi--metric space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):35-42.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.