Research Article
BibTex RIS Cite
Year 2019, , 973 - 996, 01.02.2019
https://doi.org/10.31801/cfsuasmas.501430

Abstract

References

  • Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279, (2015), 57-66.
  • Agarwal, R. P., Luo, M. J. and Raina, R. K., On Ostrowski type inequalities, Fasc. Math., 204, (2016), 5-27.
  • Ahmadmir, M. and Ullah, R., Some inequalities of Ostrowski and Grüss type for triple integrals on time scales, Tamkang J. Math, 42 (4), (2011), 415-426.
  • Alomari, M., Darus, M., Dragomir, S. S. and Cerone, P., Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23, (2010), 1071-1076.
  • Antczak, T., Mean value in invexity analysis, Nonlinear Anal., 60, (2005), 1473-1484.
  • Chu, Y.-M., Khan, M. Adil, Ali, T. and Dragomir, S. S., Inequalities for α-fractional differentiable functions, J. Inequal. Appl., (2017) 2017:93, 12 pages.
  • Dahmani, Z., On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (1), (2010), 51-58.
  • Dahmani, Z., New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (4), (2010), 493-497.
  • Dahmani, Z., Tabharit, L. and Taf, S., New generalizations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (3), (2010), 93-99.
  • Dahmani, Z., Tabharit, L. and Taf, S., Some fractional integral inequalities, Nonlinear. Sci. Lett. A, 1 (2), (2010), 155-160.
  • Dragomir, S. S., On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Ineq. & Appl., 1 (2), (1998).
  • Dragomir, S. S., The Ostrowski integral inequality for Lipschitzian mappings and applications, Comput. Math. Appl., 38, (1999), 33-37.
  • Dragomir, S. S., Ostrowski-type inequalities for Lebesgue integral: A survey of recent results, Aust. J. Math. Anal. Appl., 14 (1), (2017), 1-287.
  • Dragomir, S. S., Pečarić, J. and Persson, L. E., Some inequalities of Hadamard type, Soochow J. Math., 21, (1995), 335-341.
  • Dragomir, S. S. and Wang, S., An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 13 (11), (1997), 15-20.
  • Dragomir, S. S. and Wang, S., A new inequality of Ostrowski's type in L₁-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. Math., 28, (1997), 239-244.
  • Du, T. S., Liao, J. G. and Li, Y. J., Properties and integral inequalities of Hadamard-Simpson type for the generalized (s,m)-preinvex functions, J. Nonlinear Sci. Appl., 9, (2016), 3112-3126.
  • Farid, G., Some new Ostrowski type inequalities via fractional integrals, Int. J. Anal. App., 14 (1), (2017), 64-68.
  • Farid, G., Javed, A. and Rehman, A. U., On Hadamard inequalities for n-times differentiable functions which are relative convex via Caputo k-fractional derivatives, Nonlinear Anal. Forum, to appear.
  • Hudzik, H. and Maligranda, L., Some remarks on s-convex functions, Aequationes Math., 48, (1994), 100-111.
  • Kashuri, A., Liko, R., Khan, M. Adil and Chu, Y.-M., Some new Ostrowski type fractional integral inequalities for generalized (r;s,m,ϕ)-preinvex functions via Caputo k-fractional derivatives, Journal of Fractional Calculus and Applications, 9 (2), (2018), 163-177.
  • Kashuri, A. and Liko, R., Generalizations of Hermite-Hadamard and Ostrowski type inequalities for MT_{m}-preinvex functions, Proyecciones, 36 (1), (2017), 45-80.
  • Kashuri, A. and Liko, R., Ostrowski type fractional integral inequalities for generalized (s,m,ϕ)-preinvex functions, Aust. J. Math. Anal. Appl., 13 (1), (2016), Article 16, 1-11.
  • Katugampola, U. N., A new approach to generalized fractional derivatives, Bulletin Math. Anal. Appl., 6 (4), (2014), 1-15.
  • Khalil, R., Horani, M. Al, Yousef, A. and Sababheh, M., A new definition of fractional derivative, J. Comput. Appl.Math., 264, (2014), 65-70.
  • Khan, M. Adil, Ali, T., Dragomir, S. S. and Sarikaya, M. Z., Hermiteâ€"Hadamard type inequalities for conformable fractional integrals, RACSAM, Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat., 2017(2): 1-16 DOI10.1007/s13398-017-0408-5.
  • Khan, M. Adil, Chu, Y.-M., Kashuri, A., Liko, R. and Ali, G., New Hermite-Hadamard inequalities for conformable fractional integrals, J. Funct. Spaces, In press.
  • Khan, M. Adil, Chu, Y.-M., Khan, T. U. and Khan, J., Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., 15, (2017), 1414-1430.
  • Khan, M. Adil, Khurshid, Y. and Ali, T., Hermite-Hadamard inequality for fractional integrals via η-convex functions, Acta Math. Univ. Comenianae, Vol. LXXXVI (1), (2017), 153-164.
  • Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J., Theory and applications of fractional differential equations, North-Holland Math. Stud., 204, Elsevier, New York-London, (2006).
  • Liu, Z., Some Ostrowski-Grüss type inequalities and applications, Comput. Math. Appl., 53, (2007), 73-79.
  • Liu, Z., Some companions of an Ostrowski type inequality and applications, J. Inequal. in Pure and Appl. Math, 10 (2), (2009), Art. 52, 12 pp.
  • Liu, W., New integral inequalities involving beta function via P-convexity, Miskolc Math. Notes, 15 (2), (2014), 585-591.
  • Liu, W., Wen, W. and Park, J., Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Math. Notes, 16 (1), (2015), 249-256.
  • Liu, W., Wen, W. and Park, J., Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals,J. Nonlinear Sci. Appl., 9, (2016), 766-777.
  • Matloka, M., Inequalities for h-preinvex functions, Appl. Math. Comput., 234, 52-57, (2014).
  • Matloka, M., Ostrowski type inequalities for functions whose derivatives are h-convex via fractional integrals, Journal of Scientific Research and Reports, 3 (12), (2014), 1633-1641.
  • Mitrinovic, D. S., Pečarić, J. E. and Fink, A. M., Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht, (1993).
  • Omotoyinbo, O. and Mogbodemu, A., Some new Hermite-Hadamard integral inequalities for convex functions, Int. J. Sci. Innovation Tech., 1 (1), (2014), 1-12.
  • Özdemir, M. E., Kavurmaci, H. and Set, E. Ostrowski's type inequalities for (α,m)-convex functions, Kyungpook Math. J. , 50, (2010), 371-378.
  • Özdemir, M. E., Set, E. and Alomari, M., Integral inequalities via several kinds of convexity, Creat. Math.Inform., 20 (1), (2011), 62-73.
  • Pachpatte, B. G., On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249, (2000), 583-591. Pachpatte, B. G., On a new Ostrowski type inequality in two independent variables, Tamkang J. Math., 32 (1), (2001), 45-49.
  • Pachpatte, B. G., On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6, (2003).
  • Peng, C., Zhou, C. and Du, T. S., Riemann-Liouville fractional Simpson's inequalities through generalized (m,h₁,h₂)-preinvexity, Ital. J. Pure Appl. Math., 38, (2017), 345-367.
  • Pini, R., Invexity and generalized convexity, Optimization, 22, (1991), 513-525.
  • Purohit, S. D. and Kalla,S. L., Certain inequalities related to the Chebyshev's functional involving Erdelyi-Kober operators, Scientia Series A: Math. Sci., 25, (2014), 53-63.
  • Qi, F. and Xi, B. Y., Some integral inequalities of Simpson type for GA-ε-convex functions, Georgian Math. J., 20 (5), (2013), 775-788.
  • Rafiq, A., Mir, N. A. and Ahmad, F., Weighted Čebyšev-Ostrowski type inequalities, Applied Math. Mechanics (English Edition), 28 (7), (2007), 901-906.
  • Raina, R. K., On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian Math.J., 21 (2), (2005), 191-203.
  • Sarikaya, M. Z., On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, 79 (1), (2010), 129-134.
  • Set, E., Akdemir, A. O. and Mumcu, I., Ostrowski type inequalities for functions whoose derivatives are convex via conformable fractional integrals, Submitted.
  • Set, E., Akdemir, A. O. and Mumcu, I., Chebyshev type inequalities for conformable fractional integrals, Submitted.
  • Set, E. and Gözpinar, A., A study on Hermite-Hadamard type inequalities for s-convex functions via conformable fractional integrals, Submitted.
  • Set, E., Gözpinar, A. and Choi, J., Hermite-Hadamard type inequalities for twice differentiable m-convex functions via conformable fractional integrals, Far East J. Math. Sci., 101 (4), (2017), 873-891.
  • Set, E., Karataş, S. S. and Khan, M. Adil, Hermite-Hadamard type inequalities obtained via fractional integral for differentiable m-convex and (α,m)-convex functions, International Journal of Analysis, Vol. 2016, Article ID 4765691, 8 pages.
  • Set, E. and Mumcu, I., Hermite-Hadamard-Fejér type inequalies for conformable fractional integrals, Submitted.
  • Set, E., Sarikaya, M. Z. and Gözpinar, A., Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities, Creat. Math.Inform., Accepted paper.
  • Stancu, D. D., Coman, G. and Blaga, P., Analiză numerică şi teoria aproximării, Cluj-Napoca: Presa Universitar\u{a} Clujean\u{a}., 2, (2002).
  • Tunç, M., Ostrowski type inequalities for functions whose derivatives are MT-convex, J. Comput. Anal. Appl., 17 (4), (2014), 691-696.
  • Tunç, M., Goᅡ가ᄃv, E. and Şanal, Ü., On tgs-convex function and their inequalities, Facta Univ. Ser. Math. Inform., 30 (5), (2015), 679-691.
  • Ujević, N., Sharp inequalities of Simpson type and Ostrowski type, Comput. Math. Appl., 48, (2004), 145-151.
  • Varošanec, S., On h-convexity, J. Math. Anal. Appl., 326 (1), (2007), 303-311.
  • Yildiz, Ç., Özdemir, M. E. and Sarikaya, M. Z., New generalizations of Ostrowski-like type inequalities for fractional integrals, Kyungpook Math. J. 56, (2016), 161-172.
  • Youness, E. A., E-convex sets, E-convex functions, and E-convex programming, J. Optim. Theory Appl., 102, (1999), 439-450.
  • Zhongxue, L., On sharp inequalities of Simpson type and Ostrowski type in two independent variables, Comput. Math.Appl. , 56, (2008), 2043-2047.

SOME CAPUTO k-FRACTIONAL DERIVATIVES OF OSTROWSKI TYPE CONCERNING (n + 1)-DIFFERENTIABLE GENERALIZED RELATIVE SEMI-(r; m; p; q; h1; h2)-PREINVEX MAPPINGS

Year 2019, , 973 - 996, 01.02.2019
https://doi.org/10.31801/cfsuasmas.501430

Abstract

In this article, we first presented some integral inequalities for Gauss-Jacobi type quadrature formula involving generalized relative semi-(r;m,p,q,h₁,h₂)-preinvex mappings. And then, a new identity concerning (n+1)-differentiable mappings defined on m-invex set via Caputo k-fractional derivatives is derived. By using the notion of generalized relative semi-(r;m,p,q,h₁,h₂)-preinvexity and the obtained identity as an auxiliary result, some new estimates with respect to Ostrowski type inequalities via Caputo k-fractional derivatives are established. It is pointed out that some new special cases can be deduced from main results of the article.

References

  • Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279, (2015), 57-66.
  • Agarwal, R. P., Luo, M. J. and Raina, R. K., On Ostrowski type inequalities, Fasc. Math., 204, (2016), 5-27.
  • Ahmadmir, M. and Ullah, R., Some inequalities of Ostrowski and Grüss type for triple integrals on time scales, Tamkang J. Math, 42 (4), (2011), 415-426.
  • Alomari, M., Darus, M., Dragomir, S. S. and Cerone, P., Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23, (2010), 1071-1076.
  • Antczak, T., Mean value in invexity analysis, Nonlinear Anal., 60, (2005), 1473-1484.
  • Chu, Y.-M., Khan, M. Adil, Ali, T. and Dragomir, S. S., Inequalities for α-fractional differentiable functions, J. Inequal. Appl., (2017) 2017:93, 12 pages.
  • Dahmani, Z., On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (1), (2010), 51-58.
  • Dahmani, Z., New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (4), (2010), 493-497.
  • Dahmani, Z., Tabharit, L. and Taf, S., New generalizations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (3), (2010), 93-99.
  • Dahmani, Z., Tabharit, L. and Taf, S., Some fractional integral inequalities, Nonlinear. Sci. Lett. A, 1 (2), (2010), 155-160.
  • Dragomir, S. S., On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Ineq. & Appl., 1 (2), (1998).
  • Dragomir, S. S., The Ostrowski integral inequality for Lipschitzian mappings and applications, Comput. Math. Appl., 38, (1999), 33-37.
  • Dragomir, S. S., Ostrowski-type inequalities for Lebesgue integral: A survey of recent results, Aust. J. Math. Anal. Appl., 14 (1), (2017), 1-287.
  • Dragomir, S. S., Pečarić, J. and Persson, L. E., Some inequalities of Hadamard type, Soochow J. Math., 21, (1995), 335-341.
  • Dragomir, S. S. and Wang, S., An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 13 (11), (1997), 15-20.
  • Dragomir, S. S. and Wang, S., A new inequality of Ostrowski's type in L₁-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. Math., 28, (1997), 239-244.
  • Du, T. S., Liao, J. G. and Li, Y. J., Properties and integral inequalities of Hadamard-Simpson type for the generalized (s,m)-preinvex functions, J. Nonlinear Sci. Appl., 9, (2016), 3112-3126.
  • Farid, G., Some new Ostrowski type inequalities via fractional integrals, Int. J. Anal. App., 14 (1), (2017), 64-68.
  • Farid, G., Javed, A. and Rehman, A. U., On Hadamard inequalities for n-times differentiable functions which are relative convex via Caputo k-fractional derivatives, Nonlinear Anal. Forum, to appear.
  • Hudzik, H. and Maligranda, L., Some remarks on s-convex functions, Aequationes Math., 48, (1994), 100-111.
  • Kashuri, A., Liko, R., Khan, M. Adil and Chu, Y.-M., Some new Ostrowski type fractional integral inequalities for generalized (r;s,m,ϕ)-preinvex functions via Caputo k-fractional derivatives, Journal of Fractional Calculus and Applications, 9 (2), (2018), 163-177.
  • Kashuri, A. and Liko, R., Generalizations of Hermite-Hadamard and Ostrowski type inequalities for MT_{m}-preinvex functions, Proyecciones, 36 (1), (2017), 45-80.
  • Kashuri, A. and Liko, R., Ostrowski type fractional integral inequalities for generalized (s,m,ϕ)-preinvex functions, Aust. J. Math. Anal. Appl., 13 (1), (2016), Article 16, 1-11.
  • Katugampola, U. N., A new approach to generalized fractional derivatives, Bulletin Math. Anal. Appl., 6 (4), (2014), 1-15.
  • Khalil, R., Horani, M. Al, Yousef, A. and Sababheh, M., A new definition of fractional derivative, J. Comput. Appl.Math., 264, (2014), 65-70.
  • Khan, M. Adil, Ali, T., Dragomir, S. S. and Sarikaya, M. Z., Hermiteâ€"Hadamard type inequalities for conformable fractional integrals, RACSAM, Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat., 2017(2): 1-16 DOI10.1007/s13398-017-0408-5.
  • Khan, M. Adil, Chu, Y.-M., Kashuri, A., Liko, R. and Ali, G., New Hermite-Hadamard inequalities for conformable fractional integrals, J. Funct. Spaces, In press.
  • Khan, M. Adil, Chu, Y.-M., Khan, T. U. and Khan, J., Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., 15, (2017), 1414-1430.
  • Khan, M. Adil, Khurshid, Y. and Ali, T., Hermite-Hadamard inequality for fractional integrals via η-convex functions, Acta Math. Univ. Comenianae, Vol. LXXXVI (1), (2017), 153-164.
  • Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J., Theory and applications of fractional differential equations, North-Holland Math. Stud., 204, Elsevier, New York-London, (2006).
  • Liu, Z., Some Ostrowski-Grüss type inequalities and applications, Comput. Math. Appl., 53, (2007), 73-79.
  • Liu, Z., Some companions of an Ostrowski type inequality and applications, J. Inequal. in Pure and Appl. Math, 10 (2), (2009), Art. 52, 12 pp.
  • Liu, W., New integral inequalities involving beta function via P-convexity, Miskolc Math. Notes, 15 (2), (2014), 585-591.
  • Liu, W., Wen, W. and Park, J., Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Math. Notes, 16 (1), (2015), 249-256.
  • Liu, W., Wen, W. and Park, J., Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals,J. Nonlinear Sci. Appl., 9, (2016), 766-777.
  • Matloka, M., Inequalities for h-preinvex functions, Appl. Math. Comput., 234, 52-57, (2014).
  • Matloka, M., Ostrowski type inequalities for functions whose derivatives are h-convex via fractional integrals, Journal of Scientific Research and Reports, 3 (12), (2014), 1633-1641.
  • Mitrinovic, D. S., Pečarić, J. E. and Fink, A. M., Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht, (1993).
  • Omotoyinbo, O. and Mogbodemu, A., Some new Hermite-Hadamard integral inequalities for convex functions, Int. J. Sci. Innovation Tech., 1 (1), (2014), 1-12.
  • Özdemir, M. E., Kavurmaci, H. and Set, E. Ostrowski's type inequalities for (α,m)-convex functions, Kyungpook Math. J. , 50, (2010), 371-378.
  • Özdemir, M. E., Set, E. and Alomari, M., Integral inequalities via several kinds of convexity, Creat. Math.Inform., 20 (1), (2011), 62-73.
  • Pachpatte, B. G., On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249, (2000), 583-591. Pachpatte, B. G., On a new Ostrowski type inequality in two independent variables, Tamkang J. Math., 32 (1), (2001), 45-49.
  • Pachpatte, B. G., On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6, (2003).
  • Peng, C., Zhou, C. and Du, T. S., Riemann-Liouville fractional Simpson's inequalities through generalized (m,h₁,h₂)-preinvexity, Ital. J. Pure Appl. Math., 38, (2017), 345-367.
  • Pini, R., Invexity and generalized convexity, Optimization, 22, (1991), 513-525.
  • Purohit, S. D. and Kalla,S. L., Certain inequalities related to the Chebyshev's functional involving Erdelyi-Kober operators, Scientia Series A: Math. Sci., 25, (2014), 53-63.
  • Qi, F. and Xi, B. Y., Some integral inequalities of Simpson type for GA-ε-convex functions, Georgian Math. J., 20 (5), (2013), 775-788.
  • Rafiq, A., Mir, N. A. and Ahmad, F., Weighted Čebyšev-Ostrowski type inequalities, Applied Math. Mechanics (English Edition), 28 (7), (2007), 901-906.
  • Raina, R. K., On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian Math.J., 21 (2), (2005), 191-203.
  • Sarikaya, M. Z., On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, 79 (1), (2010), 129-134.
  • Set, E., Akdemir, A. O. and Mumcu, I., Ostrowski type inequalities for functions whoose derivatives are convex via conformable fractional integrals, Submitted.
  • Set, E., Akdemir, A. O. and Mumcu, I., Chebyshev type inequalities for conformable fractional integrals, Submitted.
  • Set, E. and Gözpinar, A., A study on Hermite-Hadamard type inequalities for s-convex functions via conformable fractional integrals, Submitted.
  • Set, E., Gözpinar, A. and Choi, J., Hermite-Hadamard type inequalities for twice differentiable m-convex functions via conformable fractional integrals, Far East J. Math. Sci., 101 (4), (2017), 873-891.
  • Set, E., Karataş, S. S. and Khan, M. Adil, Hermite-Hadamard type inequalities obtained via fractional integral for differentiable m-convex and (α,m)-convex functions, International Journal of Analysis, Vol. 2016, Article ID 4765691, 8 pages.
  • Set, E. and Mumcu, I., Hermite-Hadamard-Fejér type inequalies for conformable fractional integrals, Submitted.
  • Set, E., Sarikaya, M. Z. and Gözpinar, A., Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities, Creat. Math.Inform., Accepted paper.
  • Stancu, D. D., Coman, G. and Blaga, P., Analiză numerică şi teoria aproximării, Cluj-Napoca: Presa Universitar\u{a} Clujean\u{a}., 2, (2002).
  • Tunç, M., Ostrowski type inequalities for functions whose derivatives are MT-convex, J. Comput. Anal. Appl., 17 (4), (2014), 691-696.
  • Tunç, M., Goᅡ가ᄃv, E. and Şanal, Ü., On tgs-convex function and their inequalities, Facta Univ. Ser. Math. Inform., 30 (5), (2015), 679-691.
  • Ujević, N., Sharp inequalities of Simpson type and Ostrowski type, Comput. Math. Appl., 48, (2004), 145-151.
  • Varošanec, S., On h-convexity, J. Math. Anal. Appl., 326 (1), (2007), 303-311.
  • Yildiz, Ç., Özdemir, M. E. and Sarikaya, M. Z., New generalizations of Ostrowski-like type inequalities for fractional integrals, Kyungpook Math. J. 56, (2016), 161-172.
  • Youness, E. A., E-convex sets, E-convex functions, and E-convex programming, J. Optim. Theory Appl., 102, (1999), 439-450.
  • Zhongxue, L., On sharp inequalities of Simpson type and Ostrowski type in two independent variables, Comput. Math.Appl. , 56, (2008), 2043-2047.
There are 65 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Artion Kashuri 0000-0003-0115-3079

Rozana Liko 0000-0003-2439-8538

Publication Date February 1, 2019
Submission Date September 27, 2017
Acceptance Date July 3, 2018
Published in Issue Year 2019

Cite

APA Kashuri, A., & Liko, R. (2019). SOME CAPUTO k-FRACTIONAL DERIVATIVES OF OSTROWSKI TYPE CONCERNING (n + 1)-DIFFERENTIABLE GENERALIZED RELATIVE SEMI-(r; m; p; q; h1; h2)-PREINVEX MAPPINGS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 973-996. https://doi.org/10.31801/cfsuasmas.501430
AMA Kashuri A, Liko R. SOME CAPUTO k-FRACTIONAL DERIVATIVES OF OSTROWSKI TYPE CONCERNING (n + 1)-DIFFERENTIABLE GENERALIZED RELATIVE SEMI-(r; m; p; q; h1; h2)-PREINVEX MAPPINGS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):973-996. doi:10.31801/cfsuasmas.501430
Chicago Kashuri, Artion, and Rozana Liko. “SOME CAPUTO K-FRACTIONAL DERIVATIVES OF OSTROWSKI TYPE CONCERNING (n + 1)-DIFFERENTIABLE GENERALIZED RELATIVE SEMI-(r; M; P; Q; h1; H2)-PREINVEX MAPPINGS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 973-96. https://doi.org/10.31801/cfsuasmas.501430.
EndNote Kashuri A, Liko R (February 1, 2019) SOME CAPUTO k-FRACTIONAL DERIVATIVES OF OSTROWSKI TYPE CONCERNING (n + 1)-DIFFERENTIABLE GENERALIZED RELATIVE SEMI-(r; m; p; q; h1; h2)-PREINVEX MAPPINGS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 973–996.
IEEE A. Kashuri and R. Liko, “SOME CAPUTO k-FRACTIONAL DERIVATIVES OF OSTROWSKI TYPE CONCERNING (n + 1)-DIFFERENTIABLE GENERALIZED RELATIVE SEMI-(r; m; p; q; h1; h2)-PREINVEX MAPPINGS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 973–996, 2019, doi: 10.31801/cfsuasmas.501430.
ISNAD Kashuri, Artion - Liko, Rozana. “SOME CAPUTO K-FRACTIONAL DERIVATIVES OF OSTROWSKI TYPE CONCERNING (n + 1)-DIFFERENTIABLE GENERALIZED RELATIVE SEMI-(r; M; P; Q; h1; H2)-PREINVEX MAPPINGS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 973-996. https://doi.org/10.31801/cfsuasmas.501430.
JAMA Kashuri A, Liko R. SOME CAPUTO k-FRACTIONAL DERIVATIVES OF OSTROWSKI TYPE CONCERNING (n + 1)-DIFFERENTIABLE GENERALIZED RELATIVE SEMI-(r; m; p; q; h1; h2)-PREINVEX MAPPINGS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:973–996.
MLA Kashuri, Artion and Rozana Liko. “SOME CAPUTO K-FRACTIONAL DERIVATIVES OF OSTROWSKI TYPE CONCERNING (n + 1)-DIFFERENTIABLE GENERALIZED RELATIVE SEMI-(r; M; P; Q; h1; H2)-PREINVEX MAPPINGS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 973-96, doi:10.31801/cfsuasmas.501430.
Vancouver Kashuri A, Liko R. SOME CAPUTO k-FRACTIONAL DERIVATIVES OF OSTROWSKI TYPE CONCERNING (n + 1)-DIFFERENTIABLE GENERALIZED RELATIVE SEMI-(r; m; p; q; h1; h2)-PREINVEX MAPPINGS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):973-96.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.