Research Article
BibTex RIS Cite
Year 2020, , 1256 - 1265, 31.12.2020
https://doi.org/10.31801/cfsuasmas.546701

Abstract

References

  • Geiges, H., A brief history of contact geometry and topology, Expositiones Mathematicae, 19(1) (2001), 25-53.
  • Kholodenko, A. L., Applications of contact geometry and topology in physics, World Scientific, (2013)
  • Yano, K., Concircular geometry I: concircular transformations, Proceedings of the Imperial Academy, 16(6) (1940), 195-200.
  • Yano, K., Sawaski, S., Riemannian manifolds admitting a conformal transformation group, J. Diff. Geo,. 2 (1968), 161-184
  • De, U. C., Shaikh, A. A., Complex manifolds and contact manifolds, Narosa Publishing House, (2009).
  • Turgut Vanli, A., Unal, I., Conformal, concircular, quasi-conformal and conharmonic flatness on normal complex contact metric manifolds. International Journal of Geometric Methods in Modern Physics, 14(05) (2017), 1750067.
  • Blair, D. E., Ludden, G. D., Yano, K., Geometry of complex manifolds similar to the Calabi-Eckmann manifolds, Journal of Differential Geometry, 9(2) (1974), 263-274.
  • Bande, G. and Hadjar, A., Contact pairs. Tohoku Mathematical Journal, Second Series, 57(2) (2005), 247-260.
  • Bande, G., Hadjar, A., On normal contact pairs, International Journal of Mathematics, 21(06) (2010), 737-754.
  • Bande, G., Hadjar, A., Contact pair structures and associated metrics, In Differential Geometry, (2009), 266-275
  • Bande, G., Blair, D. E., Hadjar, A., On the curvature of metric contact pairs, Mediterranean journal of mathematics, 10(2) (2013), 989-1009.
  • Bande, G., Blair, D. E., Hadjar, A., Bochner and conformal flatness of normal metric contact pairs, Annals of Global Analysis and Geometry, 48(1) (2015), 47-56.
  • Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Springer Science Business Media, (2010).
  • Kobayashi, S., Remarks on complex contact manifolds, Proc. Amer. Math. Soc., 10 (1959), 164-167.
  • Ishihara, S., Konishi, M., Complex almost contact structures in a complex contact manifold, Kodai Math. J., 5 (1982), 30--37
  • Korkmaz, B., Normality of complex contact manifolds, Rocky Mountain J. Math., 30 (2000), 1343-1380
  • Turgut Vanli, A., Blair, D. E., The Boothby-Wang Fibration of the Iwasawa Manifold as a Critical Point of the Energy, Monatsh. Math. 147 (2006), 75-84.
  • Bande, G., Hadjar, A., On the characteristic foliations of metric contact pairs, Harmonic Maps and Differential Geometry. Contemp. Math, 542 (2011), 255-259.
  • Beldjilali, G., Belkhelfa, M., Structures on the product of two almost Hermitian almost contact manifolds, International Electronic Journal of Geometry, 9(2) (2016), 80-86.

Some flatness conditions on normal metric contact pairs

Year 2020, , 1256 - 1265, 31.12.2020
https://doi.org/10.31801/cfsuasmas.546701

Abstract

In this paper, the geometry of normal metric contact pair manifolds is studied under the flatness of conformal, concircular and quasi-conformal curvature tensors. It is proved that a conformal flat normal metric contact pair manifold is an Einstein manifold with a positive scalar curvature and has positive sectional curvature. It is also shown that a concircular flat normal metric contact pair manifold is an Einstein manifold. Finally, it is obtained that a quasi-conformally flat normal metric contact pair manifold is an Einstein manifold with a positive scalar curvature and, is a space of constant curvature.

References

  • Geiges, H., A brief history of contact geometry and topology, Expositiones Mathematicae, 19(1) (2001), 25-53.
  • Kholodenko, A. L., Applications of contact geometry and topology in physics, World Scientific, (2013)
  • Yano, K., Concircular geometry I: concircular transformations, Proceedings of the Imperial Academy, 16(6) (1940), 195-200.
  • Yano, K., Sawaski, S., Riemannian manifolds admitting a conformal transformation group, J. Diff. Geo,. 2 (1968), 161-184
  • De, U. C., Shaikh, A. A., Complex manifolds and contact manifolds, Narosa Publishing House, (2009).
  • Turgut Vanli, A., Unal, I., Conformal, concircular, quasi-conformal and conharmonic flatness on normal complex contact metric manifolds. International Journal of Geometric Methods in Modern Physics, 14(05) (2017), 1750067.
  • Blair, D. E., Ludden, G. D., Yano, K., Geometry of complex manifolds similar to the Calabi-Eckmann manifolds, Journal of Differential Geometry, 9(2) (1974), 263-274.
  • Bande, G. and Hadjar, A., Contact pairs. Tohoku Mathematical Journal, Second Series, 57(2) (2005), 247-260.
  • Bande, G., Hadjar, A., On normal contact pairs, International Journal of Mathematics, 21(06) (2010), 737-754.
  • Bande, G., Hadjar, A., Contact pair structures and associated metrics, In Differential Geometry, (2009), 266-275
  • Bande, G., Blair, D. E., Hadjar, A., On the curvature of metric contact pairs, Mediterranean journal of mathematics, 10(2) (2013), 989-1009.
  • Bande, G., Blair, D. E., Hadjar, A., Bochner and conformal flatness of normal metric contact pairs, Annals of Global Analysis and Geometry, 48(1) (2015), 47-56.
  • Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Springer Science Business Media, (2010).
  • Kobayashi, S., Remarks on complex contact manifolds, Proc. Amer. Math. Soc., 10 (1959), 164-167.
  • Ishihara, S., Konishi, M., Complex almost contact structures in a complex contact manifold, Kodai Math. J., 5 (1982), 30--37
  • Korkmaz, B., Normality of complex contact manifolds, Rocky Mountain J. Math., 30 (2000), 1343-1380
  • Turgut Vanli, A., Blair, D. E., The Boothby-Wang Fibration of the Iwasawa Manifold as a Critical Point of the Energy, Monatsh. Math. 147 (2006), 75-84.
  • Bande, G., Hadjar, A., On the characteristic foliations of metric contact pairs, Harmonic Maps and Differential Geometry. Contemp. Math, 542 (2011), 255-259.
  • Beldjilali, G., Belkhelfa, M., Structures on the product of two almost Hermitian almost contact manifolds, International Electronic Journal of Geometry, 9(2) (2016), 80-86.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

İnan Ünal 0000-0003-1318-9685

Publication Date December 31, 2020
Submission Date March 29, 2019
Acceptance Date August 20, 2020
Published in Issue Year 2020

Cite

APA Ünal, İ. (2020). Some flatness conditions on normal metric contact pairs. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1256-1265. https://doi.org/10.31801/cfsuasmas.546701
AMA Ünal İ. Some flatness conditions on normal metric contact pairs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2020;69(2):1256-1265. doi:10.31801/cfsuasmas.546701
Chicago Ünal, İnan. “Some Flatness Conditions on Normal Metric Contact Pairs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 2 (December 2020): 1256-65. https://doi.org/10.31801/cfsuasmas.546701.
EndNote Ünal İ (December 1, 2020) Some flatness conditions on normal metric contact pairs. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 2 1256–1265.
IEEE İ. Ünal, “Some flatness conditions on normal metric contact pairs”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 2, pp. 1256–1265, 2020, doi: 10.31801/cfsuasmas.546701.
ISNAD Ünal, İnan. “Some Flatness Conditions on Normal Metric Contact Pairs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/2 (December 2020), 1256-1265. https://doi.org/10.31801/cfsuasmas.546701.
JAMA Ünal İ. Some flatness conditions on normal metric contact pairs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:1256–1265.
MLA Ünal, İnan. “Some Flatness Conditions on Normal Metric Contact Pairs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 2, 2020, pp. 1256-65, doi:10.31801/cfsuasmas.546701.
Vancouver Ünal İ. Some flatness conditions on normal metric contact pairs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(2):1256-65.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.