Research Article
BibTex RIS Cite
Year 2020, , 1111 - 1118, 31.12.2020
https://doi.org/10.31801/cfsuasmas.659689

Abstract

References

  • Amir, D., Characterizations of inner product spaces, Birkhauser Verlag, 1986.
  • Bauschke, H.H., Combettes, P.L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011.
  • Bhatia, R., Sharma, R., Some inequalities for positive linear maps, Linear Algebra Appl., 436(6) (2012), 1562--1571.
  • Cheung, W.S., Pečarić, J., Bohr's inequalities for Hilbert space operators, J. Math. Anal. Appl., 323(1) (2006), 403--412.
  • Choi, M.D., Hadwin, D., Nordgren, E., Radjavi, H., Rosenthal, P., On positive linear maps preserving invertibility, J. Funct. Anal. 59(3) (1984), 462--469.
  • Cvetkovski, Z., Inequalities: Theorems, Techniques and Selected Problems, Springer Science & Business Media, 2012.
  • Evans, D.E., Positive linear maps on operator algebras, Comm. Math. Phys., 48(1) (1976), 15--22.
  • Fu, X., Some generalizations of operator inequalities, J. Math. Inequal., 9(1) (2015), 101--105.
  • Fujii, M., Zuo, H., Matrix order in Bohr inequality for operators, Banach J. Math. Anal., 1 (2010), 21--27.
  • Furuta, T., Mićić Hot, J., Pečarić, J., Seo, Y., Mond-Pečarić method in operator inequalities, Monographs in Inequalities, Zagreb, 2005.
  • Gumus I.H., A note on a conjecture about Wielandt's inequality, Linear Multilinear Algebra, 63(9) (2015), 1909--1913.
  • Hirzallah, O., Non-commutative operator Bohr inequality, J. Math. Anal. Appl., 282(2) (2003), 578--583.
  • Lin, M., On an operator Kantorovich inequality for positive linear maps, J. Math. Anal. Appl., 402(1) (2013), 127--132.
  • Størmer, E., Positive linear maps of operator algebras, Acta Math., 110(1) (1963), 233--278.
  • Zhang, P., More operator inequalities for positive linear maps, Banach J. Math. Anal., 9(1) (2015), 166--172.

Some results around quadratic maps

Year 2020, , 1111 - 1118, 31.12.2020
https://doi.org/10.31801/cfsuasmas.659689

Abstract

This paper dedicated to study quadratic maps. We present some new operator equalities and inequalities by using quadratic map in the framework of B(H). Applications for particular case of interest are also provided. The parallelogram law is recovered  and some other interesting operator equalities are established. Afterward,   we get an extension of some well known inequalities such as, triangle  inequality. Especially, Bohr's inequality is generalized to the context of quadratic map. Some results concerning this inequality are surveyed.  We give an application of our results in the previous sections. We show that our results are a generalization of some well known works due to Fujii and Hirzallah.

References

  • Amir, D., Characterizations of inner product spaces, Birkhauser Verlag, 1986.
  • Bauschke, H.H., Combettes, P.L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011.
  • Bhatia, R., Sharma, R., Some inequalities for positive linear maps, Linear Algebra Appl., 436(6) (2012), 1562--1571.
  • Cheung, W.S., Pečarić, J., Bohr's inequalities for Hilbert space operators, J. Math. Anal. Appl., 323(1) (2006), 403--412.
  • Choi, M.D., Hadwin, D., Nordgren, E., Radjavi, H., Rosenthal, P., On positive linear maps preserving invertibility, J. Funct. Anal. 59(3) (1984), 462--469.
  • Cvetkovski, Z., Inequalities: Theorems, Techniques and Selected Problems, Springer Science & Business Media, 2012.
  • Evans, D.E., Positive linear maps on operator algebras, Comm. Math. Phys., 48(1) (1976), 15--22.
  • Fu, X., Some generalizations of operator inequalities, J. Math. Inequal., 9(1) (2015), 101--105.
  • Fujii, M., Zuo, H., Matrix order in Bohr inequality for operators, Banach J. Math. Anal., 1 (2010), 21--27.
  • Furuta, T., Mićić Hot, J., Pečarić, J., Seo, Y., Mond-Pečarić method in operator inequalities, Monographs in Inequalities, Zagreb, 2005.
  • Gumus I.H., A note on a conjecture about Wielandt's inequality, Linear Multilinear Algebra, 63(9) (2015), 1909--1913.
  • Hirzallah, O., Non-commutative operator Bohr inequality, J. Math. Anal. Appl., 282(2) (2003), 578--583.
  • Lin, M., On an operator Kantorovich inequality for positive linear maps, J. Math. Anal. Appl., 402(1) (2013), 127--132.
  • Størmer, E., Positive linear maps of operator algebras, Acta Math., 110(1) (1963), 233--278.
  • Zhang, P., More operator inequalities for positive linear maps, Banach J. Math. Anal., 9(1) (2015), 166--172.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Mohsen Erfanian Omidvar 0000-0002-5395-8170

Shiva Sheybani This is me 0000-0002-7285-1571

Mahnaz Khanehgır This is me 0000-0002-7435-7307

Sever Dragomır 0000-0003-2902-6805

Publication Date December 31, 2020
Submission Date December 15, 2019
Acceptance Date May 2, 2020
Published in Issue Year 2020

Cite

APA Erfanian Omidvar, M., Sheybani, S., Khanehgır, M., Dragomır, S. (2020). Some results around quadratic maps. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1111-1118. https://doi.org/10.31801/cfsuasmas.659689
AMA Erfanian Omidvar M, Sheybani S, Khanehgır M, Dragomır S. Some results around quadratic maps. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2020;69(2):1111-1118. doi:10.31801/cfsuasmas.659689
Chicago Erfanian Omidvar, Mohsen, Shiva Sheybani, Mahnaz Khanehgır, and Sever Dragomır. “Some Results Around Quadratic Maps”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 2 (December 2020): 1111-18. https://doi.org/10.31801/cfsuasmas.659689.
EndNote Erfanian Omidvar M, Sheybani S, Khanehgır M, Dragomır S (December 1, 2020) Some results around quadratic maps. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 2 1111–1118.
IEEE M. Erfanian Omidvar, S. Sheybani, M. Khanehgır, and S. Dragomır, “Some results around quadratic maps”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 2, pp. 1111–1118, 2020, doi: 10.31801/cfsuasmas.659689.
ISNAD Erfanian Omidvar, Mohsen et al. “Some Results Around Quadratic Maps”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/2 (December 2020), 1111-1118. https://doi.org/10.31801/cfsuasmas.659689.
JAMA Erfanian Omidvar M, Sheybani S, Khanehgır M, Dragomır S. Some results around quadratic maps. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:1111–1118.
MLA Erfanian Omidvar, Mohsen et al. “Some Results Around Quadratic Maps”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 2, 2020, pp. 1111-8, doi:10.31801/cfsuasmas.659689.
Vancouver Erfanian Omidvar M, Sheybani S, Khanehgır M, Dragomır S. Some results around quadratic maps. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(2):1111-8.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.