Research Article
BibTex RIS Cite
Year 2020, , 1336 - 1344, 31.12.2020
https://doi.org/10.31801/cfsuasmas.716392

Abstract

References

  • Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, New York; The Macmillan Press Ltd., 1976.
  • Harary, F., Graph Theory, Narosa Publishing home, 1969.
  • Vizing, V.G., On an estimate of the chromatic class of a p-graph, Metody Diskret. Analiz, 5 (1964), 25--30.
  • Meyer, W., Equitable Coloring, Amer. Math. Monthly, 80 (1973), 920--922.
  • Hilton, A.J.W., de Werra, D., A sufficient condition for equitable edge-colorings of simple graphs, Discrete Mathematics, 128 (1994), 179-201.
  • Weichsel, P.M., The Kronecker product of graphs, Proc. Amer. Math. Soc., 8 (1962), 47-52.
  • Li, J.W., Zhang, Z.F., Chen, X.E., Sun, Y.R., A note on adjacent strong edge coloring of K(n,m), Acta Mathematicae Application Sinica, 22(2) (2006), 273-276.
  • Veninstine Vivik.J and Girija.G, Equitable edge chromatic number of mycielskian of graphs, Far East Journal of Mathematics,101(9) (2017), 1887-1895.

Equitable edge coloring on tensor product of graphs

Year 2020, , 1336 - 1344, 31.12.2020
https://doi.org/10.31801/cfsuasmas.716392

Abstract

A graph G is edge colored if different colors are assigned to its edges or lines, in the order of neighboring edges are allotted with least diverse k-colors. If each of k-colors can be partitioned into color sets and differs by utmost one, then it is equitable. The minimum of k-colors required is known as equitably edge chromatic number and symbolized by $\chi^{\prime}_{=}(G)$. Further the impression of equitable edge coloring was first initiated by Hilton and de Werra in 1994. In this paper, we ascertain the equitable edge chromatic number of $P_m \otimes P_n$, $P_m \otimes C_n$ and $K_{1,m} \otimes K_{1,n}$.

References

  • Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, New York; The Macmillan Press Ltd., 1976.
  • Harary, F., Graph Theory, Narosa Publishing home, 1969.
  • Vizing, V.G., On an estimate of the chromatic class of a p-graph, Metody Diskret. Analiz, 5 (1964), 25--30.
  • Meyer, W., Equitable Coloring, Amer. Math. Monthly, 80 (1973), 920--922.
  • Hilton, A.J.W., de Werra, D., A sufficient condition for equitable edge-colorings of simple graphs, Discrete Mathematics, 128 (1994), 179-201.
  • Weichsel, P.M., The Kronecker product of graphs, Proc. Amer. Math. Soc., 8 (1962), 47-52.
  • Li, J.W., Zhang, Z.F., Chen, X.E., Sun, Y.R., A note on adjacent strong edge coloring of K(n,m), Acta Mathematicae Application Sinica, 22(2) (2006), 273-276.
  • Veninstine Vivik.J and Girija.G, Equitable edge chromatic number of mycielskian of graphs, Far East Journal of Mathematics,101(9) (2017), 1887-1895.
There are 8 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Vivik J Veninstine 0000-0003-3192-003X

M. M. Akbar Alı This is me 0000-0002-7077-4015

G. Gırıja This is me 0000-0003-0812-8378

Publication Date December 31, 2020
Submission Date April 17, 2020
Acceptance Date July 14, 2020
Published in Issue Year 2020

Cite

APA Veninstine, V. J., Akbar Alı, M. M., & Gırıja, G. (2020). Equitable edge coloring on tensor product of graphs. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1336-1344. https://doi.org/10.31801/cfsuasmas.716392
AMA Veninstine VJ, Akbar Alı MM, Gırıja G. Equitable edge coloring on tensor product of graphs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2020;69(2):1336-1344. doi:10.31801/cfsuasmas.716392
Chicago Veninstine, Vivik J, M. M. Akbar Alı, and G. Gırıja. “Equitable Edge Coloring on Tensor Product of Graphs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 2 (December 2020): 1336-44. https://doi.org/10.31801/cfsuasmas.716392.
EndNote Veninstine VJ, Akbar Alı MM, Gırıja G (December 1, 2020) Equitable edge coloring on tensor product of graphs. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 2 1336–1344.
IEEE V. J. Veninstine, M. M. Akbar Alı, and G. Gırıja, “Equitable edge coloring on tensor product of graphs”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 2, pp. 1336–1344, 2020, doi: 10.31801/cfsuasmas.716392.
ISNAD Veninstine, Vivik J et al. “Equitable Edge Coloring on Tensor Product of Graphs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/2 (December 2020), 1336-1344. https://doi.org/10.31801/cfsuasmas.716392.
JAMA Veninstine VJ, Akbar Alı MM, Gırıja G. Equitable edge coloring on tensor product of graphs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:1336–1344.
MLA Veninstine, Vivik J et al. “Equitable Edge Coloring on Tensor Product of Graphs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 2, 2020, pp. 1336-44, doi:10.31801/cfsuasmas.716392.
Vancouver Veninstine VJ, Akbar Alı MM, Gırıja G. Equitable edge coloring on tensor product of graphs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(2):1336-44.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.