Research Article
BibTex RIS Cite
Year 2020, , 1356 - 1367, 31.12.2020
https://doi.org/10.31801/cfsuasmas.762646

Abstract

References

  • Aliev, I. A., Gadjiev, A. D., Aral, A., On approximation properties of a family of linear operators at critical value of parameter, J. Approx. Theory, 138(2) (2006), 242--253.
  • Almali, S. E., On pointwise convergence of the family of Urysohn-type integral operators, Math. Methods Appl. Sci., 42(16) (2019), 5346--5353.
  • Almali, S. E., Gadjiev, A. D., On approximation properties of certain multidimensional nonlinear integrals, J. Nonlinear Sci. Appl., 9(5) (2016), 3090-3097.
  • Altomare, F., Campiti, M., Korovkin-type Approximation Theory and Its Applications, Appendix A by Michael Pannenberg and Appendix B by Ferdinand Beckhoff, Berlin: De Gruyter Studies in Mathematics 17., Walter de Gruyter & Company, 1994.
  • Altin, H. E., On pointwise approximation properties of certain nonlinear Bernstein operators, Tbilisi Math. J., 12(2) (2019), 47--58.
  • Angeloni, L., Vinti, G., Convergence in variation and rate of approximation for nonlinear integral operators of convolution type, Results Math., 49(1-2) (2006), 1--23. (Erratum: Results Math. 57 (2010), no. 3-4, 387--391)
  • Bardaro, C., Musielak, J., Vinti, G., Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, 9., Berlin: Walter de Gruyter & Company, 2003.
  • Butzer, P. L., Nessel, R. J., Fourier analysis and approximation Vol. 1: One-dimensional Theory, Pure and Applied Mathematics, Vol. 40., New York-London: Academic Press, 1971.
  • Costarelli, D., Vinti, G., Approximation by nonlinear multivariate sampling Kantorovich type operators and applications to image processing, Numer. Funct. Anal. Optim., 34(8) (2013), 819--844.
  • Folland, G. B., Real Analysis: Modern Techniques and Their Applications, Pure and Applied Mathematics, New York: Wiley, 1999.
  • Gadjiev, A. D., On nearness to zero of a family of nonlinear integral operators of Hammerstein, (Russian-Azerbaijani summary) Izv. Akad. Nauk Azerbaĭdžan. SSR Ser. Fiz.-Tehn. Mat. Nauk, 2 (1966), 32--34.
  • Gadjiev, A. D., The order of convergence of singular integrals which depend on two parameters, (Russian), In: Special problems of functional analysis and their applications to the theory of differential equations and the theory of functions (Russian), (1968), 40--44.
  • Karsli, H., On approximation properties of non-convolution type nonlinear integral operators, Anal. Theory Appl., 26(2) (2010), 140--152.
  • Musielak, J., On some approximation problems in modular spaces, Constructive function theory '81 (Varna, 1981), Publ. House Bulgar. Acad. Sci., Sofia (1983), 455--461.
  • Rudin, W., Real and Complex Analysis, Third edition., New York: McGraw-Hill Book Company, 1987.
  • Serenbay, S. K., Yilmaz, M. M., Ibikli, E., The convergence of a family of integral operators (in Lp space) with a positive kernel, J. Comput. Appl. Math., 235(16) (2011), 4567--4575.
  • Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30. Princeton-New Jersey: Princeton University Press, 1970.
  • Stein, E. M., Weiss, G., Introduction to Fourier analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32. Princeton-New Jersey: Princeton University Press, 1971.
  • Świderski, T., Wachnicki, E., Nonlinear singular integrals depending on two parameters, Comment. Math. (Prace Mat.), 40 (2000), 181--189.
  • Taberski, R., Singular integrals depending on two parameters, Prace Mat., 7 (1962), 173-179.
  • Uysal, G., Mishra, V. N., Serenbay, S. K., Some weighted approximation properties of nonlinear double integral operators, Korean J. Math., 26(3) (2018), 483--501.
  • Yilmaz, B., Jackson type generalization of nonlinear integral operators, J. Comput. Anal. Appl., 17(1) (2014), 77--83.
  • Yilmaz, B., On some approximation properties of the Gauss-Weierstrass operators, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68(2) (2019), 2154--2160.
  • Yilmaz, B., Ari, D. A., A note on the modified Picard integral operators, Math. Methods Appl. Sci., (2020), 1-6. https://doi.org/10.1002/mma.6360

On certain multidimensional nonlinear integrals

Year 2020, , 1356 - 1367, 31.12.2020
https://doi.org/10.31801/cfsuasmas.762646

Abstract

The aim of the paper is to obtain generalized convergence results for nonlinear multidimensional integrals of the form:

L_{η}(ω;x)=((ηⁿ)/(Ω_{n-1}))∫_{D}K(η|t-x|,ω(t))dt.

We will prove pointwise convergence of the family L_{η}(ω;x) as η→∞ at a fixed point x∈D which represents any generalized Lebesgue point of function ω∈L₁(D), where D is an open bounded subset of Rⁿ. Moreover, we will consider the case D=Rⁿ.

The aim of the paper is to obtain generalized convergence results for nonlinear multidimensional integrals of the form:

L_{η}(ω;x)=((ηⁿ)/(Ω_{n-1}))∫_{D}K(η|t-x|,ω(t))dt.

We will prove pointwise convergence of the family L_{η}(ω;x) as η→∞ at a fixed point x∈D which represents any generalized Lebesgue point of function ω∈L₁(D), where D is an open bounded subset of Rⁿ. Moreover, we will consider the case D=Rⁿ.

References

  • Aliev, I. A., Gadjiev, A. D., Aral, A., On approximation properties of a family of linear operators at critical value of parameter, J. Approx. Theory, 138(2) (2006), 242--253.
  • Almali, S. E., On pointwise convergence of the family of Urysohn-type integral operators, Math. Methods Appl. Sci., 42(16) (2019), 5346--5353.
  • Almali, S. E., Gadjiev, A. D., On approximation properties of certain multidimensional nonlinear integrals, J. Nonlinear Sci. Appl., 9(5) (2016), 3090-3097.
  • Altomare, F., Campiti, M., Korovkin-type Approximation Theory and Its Applications, Appendix A by Michael Pannenberg and Appendix B by Ferdinand Beckhoff, Berlin: De Gruyter Studies in Mathematics 17., Walter de Gruyter & Company, 1994.
  • Altin, H. E., On pointwise approximation properties of certain nonlinear Bernstein operators, Tbilisi Math. J., 12(2) (2019), 47--58.
  • Angeloni, L., Vinti, G., Convergence in variation and rate of approximation for nonlinear integral operators of convolution type, Results Math., 49(1-2) (2006), 1--23. (Erratum: Results Math. 57 (2010), no. 3-4, 387--391)
  • Bardaro, C., Musielak, J., Vinti, G., Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, 9., Berlin: Walter de Gruyter & Company, 2003.
  • Butzer, P. L., Nessel, R. J., Fourier analysis and approximation Vol. 1: One-dimensional Theory, Pure and Applied Mathematics, Vol. 40., New York-London: Academic Press, 1971.
  • Costarelli, D., Vinti, G., Approximation by nonlinear multivariate sampling Kantorovich type operators and applications to image processing, Numer. Funct. Anal. Optim., 34(8) (2013), 819--844.
  • Folland, G. B., Real Analysis: Modern Techniques and Their Applications, Pure and Applied Mathematics, New York: Wiley, 1999.
  • Gadjiev, A. D., On nearness to zero of a family of nonlinear integral operators of Hammerstein, (Russian-Azerbaijani summary) Izv. Akad. Nauk Azerbaĭdžan. SSR Ser. Fiz.-Tehn. Mat. Nauk, 2 (1966), 32--34.
  • Gadjiev, A. D., The order of convergence of singular integrals which depend on two parameters, (Russian), In: Special problems of functional analysis and their applications to the theory of differential equations and the theory of functions (Russian), (1968), 40--44.
  • Karsli, H., On approximation properties of non-convolution type nonlinear integral operators, Anal. Theory Appl., 26(2) (2010), 140--152.
  • Musielak, J., On some approximation problems in modular spaces, Constructive function theory '81 (Varna, 1981), Publ. House Bulgar. Acad. Sci., Sofia (1983), 455--461.
  • Rudin, W., Real and Complex Analysis, Third edition., New York: McGraw-Hill Book Company, 1987.
  • Serenbay, S. K., Yilmaz, M. M., Ibikli, E., The convergence of a family of integral operators (in Lp space) with a positive kernel, J. Comput. Appl. Math., 235(16) (2011), 4567--4575.
  • Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30. Princeton-New Jersey: Princeton University Press, 1970.
  • Stein, E. M., Weiss, G., Introduction to Fourier analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32. Princeton-New Jersey: Princeton University Press, 1971.
  • Świderski, T., Wachnicki, E., Nonlinear singular integrals depending on two parameters, Comment. Math. (Prace Mat.), 40 (2000), 181--189.
  • Taberski, R., Singular integrals depending on two parameters, Prace Mat., 7 (1962), 173-179.
  • Uysal, G., Mishra, V. N., Serenbay, S. K., Some weighted approximation properties of nonlinear double integral operators, Korean J. Math., 26(3) (2018), 483--501.
  • Yilmaz, B., Jackson type generalization of nonlinear integral operators, J. Comput. Anal. Appl., 17(1) (2014), 77--83.
  • Yilmaz, B., On some approximation properties of the Gauss-Weierstrass operators, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68(2) (2019), 2154--2160.
  • Yilmaz, B., Ari, D. A., A note on the modified Picard integral operators, Math. Methods Appl. Sci., (2020), 1-6. https://doi.org/10.1002/mma.6360
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Özge Özalp Güller 0000-0002-3775-3757

Gumrah Uysal 0000-0001-7747-1706

Publication Date December 31, 2020
Submission Date July 2, 2020
Acceptance Date September 18, 2020
Published in Issue Year 2020

Cite

APA Özalp Güller, Ö., & Uysal, G. (2020). On certain multidimensional nonlinear integrals. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1356-1367. https://doi.org/10.31801/cfsuasmas.762646
AMA Özalp Güller Ö, Uysal G. On certain multidimensional nonlinear integrals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2020;69(2):1356-1367. doi:10.31801/cfsuasmas.762646
Chicago Özalp Güller, Özge, and Gumrah Uysal. “On Certain Multidimensional Nonlinear Integrals”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 2 (December 2020): 1356-67. https://doi.org/10.31801/cfsuasmas.762646.
EndNote Özalp Güller Ö, Uysal G (December 1, 2020) On certain multidimensional nonlinear integrals. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 2 1356–1367.
IEEE Ö. Özalp Güller and G. Uysal, “On certain multidimensional nonlinear integrals”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 2, pp. 1356–1367, 2020, doi: 10.31801/cfsuasmas.762646.
ISNAD Özalp Güller, Özge - Uysal, Gumrah. “On Certain Multidimensional Nonlinear Integrals”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/2 (December 2020), 1356-1367. https://doi.org/10.31801/cfsuasmas.762646.
JAMA Özalp Güller Ö, Uysal G. On certain multidimensional nonlinear integrals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:1356–1367.
MLA Özalp Güller, Özge and Gumrah Uysal. “On Certain Multidimensional Nonlinear Integrals”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 2, 2020, pp. 1356-67, doi:10.31801/cfsuasmas.762646.
Vancouver Özalp Güller Ö, Uysal G. On certain multidimensional nonlinear integrals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(2):1356-67.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.