Akyol, M. A., Conformal anti-invariant submersions from cosymplectic manifolds, Hacettepe Journal of Mathematics and Statistics, 46, (2017), 177-192.
Beniamino, C.M., Antonio, D.N., Ivan, Y., A survey on cosymplectic geometry,arXiv: 1305.3704 v3.
Blair, D.E., Riemannian geometry of contact and symplectic manifolds,Progress in Mathematics 203, Birkhauser, 2002.
Blair, D.E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, 1976.
De, U.C., Sarkar,A., On a type of P- Sasakian manifolds, Math. Reports, 11 (61), (2009), 139-144.
Deszcz, R., Verstraelen, L., and Yaprak, S., Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature tensor, Chin. J. Math. 22, 2, (1994), 139-157.
Eisenhart, L.P., Riemannian Geometry, Princeton University Press, 1949.
Kim, T.W., Pak, H.K., Canonical foliations of certain classes of almost contact metric structures, Acta Math, Sinica, Eng. Ser. Aug., 21, 4, (2005) 841-846.
Matsumoto, K., Ianus, S., Mihai, I., On P-Sasakian manifolds which admit certain tensor fields, Publ. Math. Debrecen 33, (1986), 61-65.
Akyol, M. A., Conformal anti-invariant submersions from cosymplectic manifolds, Hacettepe Journal of Mathematics and Statistics, 46, (2017), 177-192.
Beniamino, C.M., Antonio, D.N., Ivan, Y., A survey on cosymplectic geometry,arXiv: 1305.3704 v3.
Blair, D.E., Riemannian geometry of contact and symplectic manifolds,Progress in Mathematics 203, Birkhauser, 2002.
Blair, D.E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, 1976.
De, U.C., Sarkar,A., On a type of P- Sasakian manifolds, Math. Reports, 11 (61), (2009), 139-144.
Deszcz, R., Verstraelen, L., and Yaprak, S., Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature tensor, Chin. J. Math. 22, 2, (1994), 139-157.
Eisenhart, L.P., Riemannian Geometry, Princeton University Press, 1949.
Kim, T.W., Pak, H.K., Canonical foliations of certain classes of almost contact metric structures, Acta Math, Sinica, Eng. Ser. Aug., 21, 4, (2005) 841-846.
Matsumoto, K., Ianus, S., Mihai, I., On P-Sasakian manifolds which admit certain tensor fields, Publ. Math. Debrecen 33, (1986), 61-65.
Beyendi, S., Ayar, G., & Aktan, N. (2019). On a type of α-cosymplectic manifolds. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 852-861. https://doi.org/10.31801/cfsuasmas.482772
AMA
Beyendi S, Ayar G, Aktan N. On a type of α-cosymplectic manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):852-861. doi:10.31801/cfsuasmas.482772
Chicago
Beyendi, Selahattin, Gülhan Ayar, and Nesip Aktan. “On a Type of α-Cosymplectic Manifolds”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 852-61. https://doi.org/10.31801/cfsuasmas.482772.
EndNote
Beyendi S, Ayar G, Aktan N (February 1, 2019) On a type of α-cosymplectic manifolds. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 852–861.
IEEE
S. Beyendi, G. Ayar, and N. Aktan, “On a type of α-cosymplectic manifolds”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 852–861, 2019, doi: 10.31801/cfsuasmas.482772.
ISNAD
Beyendi, Selahattin et al. “On a Type of α-Cosymplectic Manifolds”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 852-861. https://doi.org/10.31801/cfsuasmas.482772.
JAMA
Beyendi S, Ayar G, Aktan N. On a type of α-cosymplectic manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:852–861.
MLA
Beyendi, Selahattin et al. “On a Type of α-Cosymplectic Manifolds”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 852-61, doi:10.31801/cfsuasmas.482772.
Vancouver
Beyendi S, Ayar G, Aktan N. On a type of α-cosymplectic manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):852-61.