Research Article
BibTex RIS Cite

Convolution Properties for Salagean-type Analytic Functions Defined by q- Difference Operator

Year 2019, Volume: 68 Issue: 2, 1647 - 1652, 01.08.2019
https://doi.org/10.31801/cfsuasmas.420820

Abstract

In this paper, we define  Salagean-type analytic  functions by using concept of q- derivative operator. We investigate convolution properties and coefficient estimates for Salagean-type analytic functions denoted by S^{m,\lambda}_q[A,B].

References

  • Andrews, G. E., Applications of basic hypergeometric functions, SIAM Rev. 16 (1974), 441-484.
  • Çaglar, M. and Deniz, E., Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 66 (1) (2017), 85-91. Fine, N. J., Basic hypergeometric series and applications, Math. Surveys Monogr. 1988.
  • Gasper, G. and Rahman, M., Basic hypergeometric series, Cambridge University Press, 2004.
  • Goodman, A. W., Univalent functions, Volume I and Volume II, Mariner Pub. Co. Inc. Tampa Florida, 1984.
  • Jackson, F. H., On q- functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1909), 253-281.
  • Jackson, F. H., q- difference equations, Amer. J. Math. 32 (1910), 305-314.
  • Janowski, W., Some extremal problems for certain families of analytic Functions I, Ann. Polon. Math. 28 (1973), 297-326.
  • Kac, V. and Cheung, P., Quantum calculus, Springer, 2002.
  • Salagean, G. S., Subclass of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1 (1998), 362-372.
Year 2019, Volume: 68 Issue: 2, 1647 - 1652, 01.08.2019
https://doi.org/10.31801/cfsuasmas.420820

Abstract

References

  • Andrews, G. E., Applications of basic hypergeometric functions, SIAM Rev. 16 (1974), 441-484.
  • Çaglar, M. and Deniz, E., Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 66 (1) (2017), 85-91. Fine, N. J., Basic hypergeometric series and applications, Math. Surveys Monogr. 1988.
  • Gasper, G. and Rahman, M., Basic hypergeometric series, Cambridge University Press, 2004.
  • Goodman, A. W., Univalent functions, Volume I and Volume II, Mariner Pub. Co. Inc. Tampa Florida, 1984.
  • Jackson, F. H., On q- functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1909), 253-281.
  • Jackson, F. H., q- difference equations, Amer. J. Math. 32 (1910), 305-314.
  • Janowski, W., Some extremal problems for certain families of analytic Functions I, Ann. Polon. Math. 28 (1973), 297-326.
  • Kac, V. and Cheung, P., Quantum calculus, Springer, 2002.
  • Salagean, G. S., Subclass of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1 (1998), 362-372.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Asena Çetinkaya 0000-0002-8815-5642

Publication Date August 1, 2019
Submission Date May 3, 2018
Acceptance Date November 16, 2018
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Çetinkaya, A. (2019). Convolution Properties for Salagean-type Analytic Functions Defined by q- Difference Operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1647-1652. https://doi.org/10.31801/cfsuasmas.420820
AMA Çetinkaya A. Convolution Properties for Salagean-type Analytic Functions Defined by q- Difference Operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1647-1652. doi:10.31801/cfsuasmas.420820
Chicago Çetinkaya, Asena. “Convolution Properties for Salagean-Type Analytic Functions Defined by Q- Difference Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1647-52. https://doi.org/10.31801/cfsuasmas.420820.
EndNote Çetinkaya A (August 1, 2019) Convolution Properties for Salagean-type Analytic Functions Defined by q- Difference Operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1647–1652.
IEEE A. Çetinkaya, “Convolution Properties for Salagean-type Analytic Functions Defined by q- Difference Operator”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1647–1652, 2019, doi: 10.31801/cfsuasmas.420820.
ISNAD Çetinkaya, Asena. “Convolution Properties for Salagean-Type Analytic Functions Defined by Q- Difference Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1647-1652. https://doi.org/10.31801/cfsuasmas.420820.
JAMA Çetinkaya A. Convolution Properties for Salagean-type Analytic Functions Defined by q- Difference Operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1647–1652.
MLA Çetinkaya, Asena. “Convolution Properties for Salagean-Type Analytic Functions Defined by Q- Difference Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1647-52, doi:10.31801/cfsuasmas.420820.
Vancouver Çetinkaya A. Convolution Properties for Salagean-type Analytic Functions Defined by q- Difference Operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1647-52.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.