Research Article
BibTex RIS Cite

The dimension of products of n homogeneous components in free lie algebras

Year 2019, Volume: 68 Issue: 2, 1774 - 1779, 01.08.2019
https://doi.org/10.31801/cfsuasmas.457500

Abstract

Let L be a free Lie algebra of finite rank r≥2 over a field F and we let L_{m_{i}} denote the degree m_{i} homogeneous component of L. Ralph Stöhr and Micheal Vaughan-Lee derived formulae for the dimension of the subspaces [L_{m₁},L_{m₂}] for all m₁ and m₂. Then, the author and R. Stöhr obtained formulae for the dimension of the products [L_{m₁},L_{m₂},L_{m₃}] under certain conditions on m₁,m₂,m₃. In this paper, we study on products of n homogeneous components in free Lie algebra and we derive formulae for the dimension of such products.

References

  • Magnus W, Karrass A, Solitar D. Combinatorial Group Theory, Presentations of Groups interms of Generators and Relations, New York, NY, USA Dover Publications, 2nd revised ed.,1976.
  • Mansuroğlu N, Stöhr R. On the dimension of products of homogeneous subspaces in free Liealgebras. Internat. J. Algebra Comput., (2013), 1(23):205-213.
  • Shirshov A.I. Subalgebras of free Lie algebras. Mat. Sb., (1953), 33:441-452, (in Russian).
  • Shirshov A.I. Selected works of A. I. Shirshov. Translated from the Russian by Murray Bremnerand Mikhail V. Kotchetov, Edited by Leonid A. Bokut, Victor Latyshev, Ivan Shestakov andEfim Zelmanov, Contemporary Matematicians, Birkhuser Verlag, Basel, viii+242 pp, 2009.
  • Stöhr R, Vaughan-Lee M. Products of homogeneous subspaces in free Lie algebras, Internat.J. Algebra Comput., (2009), 5(19):699-703.
  • Witt E. Treue Darstellungen Liescher Ringe. J. Reine Angew. Math., (1937), 177:152-160.
  • Witt E. Die Unterringe der freien Lieschen Ringe, Math. Z., (1956), 64:195-216.
Year 2019, Volume: 68 Issue: 2, 1774 - 1779, 01.08.2019
https://doi.org/10.31801/cfsuasmas.457500

Abstract

References

  • Magnus W, Karrass A, Solitar D. Combinatorial Group Theory, Presentations of Groups interms of Generators and Relations, New York, NY, USA Dover Publications, 2nd revised ed.,1976.
  • Mansuroğlu N, Stöhr R. On the dimension of products of homogeneous subspaces in free Liealgebras. Internat. J. Algebra Comput., (2013), 1(23):205-213.
  • Shirshov A.I. Subalgebras of free Lie algebras. Mat. Sb., (1953), 33:441-452, (in Russian).
  • Shirshov A.I. Selected works of A. I. Shirshov. Translated from the Russian by Murray Bremnerand Mikhail V. Kotchetov, Edited by Leonid A. Bokut, Victor Latyshev, Ivan Shestakov andEfim Zelmanov, Contemporary Matematicians, Birkhuser Verlag, Basel, viii+242 pp, 2009.
  • Stöhr R, Vaughan-Lee M. Products of homogeneous subspaces in free Lie algebras, Internat.J. Algebra Comput., (2009), 5(19):699-703.
  • Witt E. Treue Darstellungen Liescher Ringe. J. Reine Angew. Math., (1937), 177:152-160.
  • Witt E. Die Unterringe der freien Lieschen Ringe, Math. Z., (1956), 64:195-216.
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Nil Mansuroğlu 0000-0002-6400-2115

Publication Date August 1, 2019
Submission Date September 5, 2018
Acceptance Date December 29, 2018
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Mansuroğlu, N. (2019). The dimension of products of n homogeneous components in free lie algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1774-1779. https://doi.org/10.31801/cfsuasmas.457500
AMA Mansuroğlu N. The dimension of products of n homogeneous components in free lie algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1774-1779. doi:10.31801/cfsuasmas.457500
Chicago Mansuroğlu, Nil. “The Dimension of Products of N Homogeneous Components in Free Lie Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1774-79. https://doi.org/10.31801/cfsuasmas.457500.
EndNote Mansuroğlu N (August 1, 2019) The dimension of products of n homogeneous components in free lie algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1774–1779.
IEEE N. Mansuroğlu, “The dimension of products of n homogeneous components in free lie algebras”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1774–1779, 2019, doi: 10.31801/cfsuasmas.457500.
ISNAD Mansuroğlu, Nil. “The Dimension of Products of N Homogeneous Components in Free Lie Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1774-1779. https://doi.org/10.31801/cfsuasmas.457500.
JAMA Mansuroğlu N. The dimension of products of n homogeneous components in free lie algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1774–1779.
MLA Mansuroğlu, Nil. “The Dimension of Products of N Homogeneous Components in Free Lie Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1774-9, doi:10.31801/cfsuasmas.457500.
Vancouver Mansuroğlu N. The dimension of products of n homogeneous components in free lie algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1774-9.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.