Research Article
BibTex RIS Cite
Year 2019, Volume: 68 Issue: 2, 1733 - 1741, 01.08.2019
https://doi.org/10.31801/cfsuasmas.551883

Abstract

References

  • Amini, A.R., Fibonacci numbers from a long division formula, Mathematical Spectrum, 40 (2008), 59-61.
  • Belbachir, H. and Bencherif, F., Sums of products of generalized Fibonacci and Lucas numbers, arXiv: 0708.2347v1, 17.08.2007.
  • Benjamin, A. T. and Quinn, J. J., Proofs that really count, the art of combinatorial proofs, Mathematical Association of America, Providence, RI, 2003.
  • Čerin, Z., Sums of products of generalized Fibonacci and Lucas numbers, Demonstratio Math., 42(2), (2009), 247-258.
  • Čerin, Z., Some alternating sums of Lucas numbers, Cent. Eur. J. Math., 3(1), (2015), 1-13.
  • Čerin, Z., Bitim, B. D. and Keskin, R., Sum formulae of generalized Fibonacci and Lucas numbers, Honam Math. J., 40(1), (2018), 199-210.
  • Chong, C. Y., Cheah, C. L. and Ho, C. K., Some identities of generalized Fibonacci sequence, AIP Conf. Proc., 1605 (2014), 661-665 .
  • Horadam, A. F., Basic properties of certain generalized sequences of numbers, Fibonacci Quart., 3(5), (1965), 161-176.
  • Koshy, T., Fibonacci and Lucas numbers with applications, Wiley and Sons, Canada, 2001.
  • Long, C. T., Discovering Fibonacci identities, Fibonacci Quart., 24(2), (1986), 160-167.
  • Lucas, E., Théorie des fonctions numériques simplement périodiques, Amer. J. Math., 1 (1878), 184-240.
  • Melham, R. S., On sums of powers of terms in a linear recurrence, Port. Math., 56(4), (1999), 501-508.
  • Shannon, A. G. and Horadam, A. F., Special recurrence relations associated with the sequence {w_{n}(a,b;p,q)}, Fibonacci Quart., 17(4), (1979), 294-299.
  • Vajda, S., Fibonacci and Lucas numbers and the golden section, Ellis Horwood Ltd. Publ., England, 1989.

(p; q)-FIBONACCI AND (p; q)-LUCAS SUMS BY THE DERIVATIVES OF SOME POLYNOMIALS

Year 2019, Volume: 68 Issue: 2, 1733 - 1741, 01.08.2019
https://doi.org/10.31801/cfsuasmas.551883

Abstract

The main purpose of this paper is to survey several sum formulae of (p,q)-Fibonacci number U_{n} and (p,q)-Lucas number V_{n} by using the first and the second derivatives of the equations

xⁿ=(x²-px+q)(∑U_{j}x^{n-1-j})+U_{n}x-qU_{n-1}

and

2xⁿ⁺¹-pxⁿ=(x²-px+q)(∑V_{j}x^{n-1-j})+V_{n}x-qV_{n-1}.

References

  • Amini, A.R., Fibonacci numbers from a long division formula, Mathematical Spectrum, 40 (2008), 59-61.
  • Belbachir, H. and Bencherif, F., Sums of products of generalized Fibonacci and Lucas numbers, arXiv: 0708.2347v1, 17.08.2007.
  • Benjamin, A. T. and Quinn, J. J., Proofs that really count, the art of combinatorial proofs, Mathematical Association of America, Providence, RI, 2003.
  • Čerin, Z., Sums of products of generalized Fibonacci and Lucas numbers, Demonstratio Math., 42(2), (2009), 247-258.
  • Čerin, Z., Some alternating sums of Lucas numbers, Cent. Eur. J. Math., 3(1), (2015), 1-13.
  • Čerin, Z., Bitim, B. D. and Keskin, R., Sum formulae of generalized Fibonacci and Lucas numbers, Honam Math. J., 40(1), (2018), 199-210.
  • Chong, C. Y., Cheah, C. L. and Ho, C. K., Some identities of generalized Fibonacci sequence, AIP Conf. Proc., 1605 (2014), 661-665 .
  • Horadam, A. F., Basic properties of certain generalized sequences of numbers, Fibonacci Quart., 3(5), (1965), 161-176.
  • Koshy, T., Fibonacci and Lucas numbers with applications, Wiley and Sons, Canada, 2001.
  • Long, C. T., Discovering Fibonacci identities, Fibonacci Quart., 24(2), (1986), 160-167.
  • Lucas, E., Théorie des fonctions numériques simplement périodiques, Amer. J. Math., 1 (1878), 184-240.
  • Melham, R. S., On sums of powers of terms in a linear recurrence, Port. Math., 56(4), (1999), 501-508.
  • Shannon, A. G. and Horadam, A. F., Special recurrence relations associated with the sequence {w_{n}(a,b;p,q)}, Fibonacci Quart., 17(4), (1979), 294-299.
  • Vajda, S., Fibonacci and Lucas numbers and the golden section, Ellis Horwood Ltd. Publ., England, 1989.
There are 14 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Review Articles
Authors

B. Demirtürk Bitim 0000-0002-5911-5190

N. Topal This is me 0000-0002-2061-3432

Publication Date August 1, 2019
Submission Date October 31, 2017
Acceptance Date February 16, 2019
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Demirtürk Bitim, B., & Topal, N. (2019). (p; q)-FIBONACCI AND (p; q)-LUCAS SUMS BY THE DERIVATIVES OF SOME POLYNOMIALS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1733-1741. https://doi.org/10.31801/cfsuasmas.551883
AMA Demirtürk Bitim B, Topal N. (p; q)-FIBONACCI AND (p; q)-LUCAS SUMS BY THE DERIVATIVES OF SOME POLYNOMIALS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1733-1741. doi:10.31801/cfsuasmas.551883
Chicago Demirtürk Bitim, B., and N. Topal. “(p; Q)-FIBONACCI AND (p; Q)-LUCAS SUMS BY THE DERIVATIVES OF SOME POLYNOMIALS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1733-41. https://doi.org/10.31801/cfsuasmas.551883.
EndNote Demirtürk Bitim B, Topal N (August 1, 2019) (p; q)-FIBONACCI AND (p; q)-LUCAS SUMS BY THE DERIVATIVES OF SOME POLYNOMIALS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1733–1741.
IEEE B. Demirtürk Bitim and N. Topal, “(p; q)-FIBONACCI AND (p; q)-LUCAS SUMS BY THE DERIVATIVES OF SOME POLYNOMIALS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1733–1741, 2019, doi: 10.31801/cfsuasmas.551883.
ISNAD Demirtürk Bitim, B. - Topal, N. “(p; Q)-FIBONACCI AND (p; Q)-LUCAS SUMS BY THE DERIVATIVES OF SOME POLYNOMIALS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1733-1741. https://doi.org/10.31801/cfsuasmas.551883.
JAMA Demirtürk Bitim B, Topal N. (p; q)-FIBONACCI AND (p; q)-LUCAS SUMS BY THE DERIVATIVES OF SOME POLYNOMIALS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1733–1741.
MLA Demirtürk Bitim, B. and N. Topal. “(p; Q)-FIBONACCI AND (p; Q)-LUCAS SUMS BY THE DERIVATIVES OF SOME POLYNOMIALS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1733-41, doi:10.31801/cfsuasmas.551883.
Vancouver Demirtürk Bitim B, Topal N. (p; q)-FIBONACCI AND (p; q)-LUCAS SUMS BY THE DERIVATIVES OF SOME POLYNOMIALS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1733-41.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.