Research Article
BibTex RIS Cite
Year 2020, Volume: 69 Issue: 1, 320 - 335, 30.06.2020
https://doi.org/10.31801/cfsuasmas.556898

Abstract

References

  • Arvasi, Z., Crossed squares and 2-crossed modules of commutative algebras, Theory and Applications of Categories, 3(7), (1997), 160--181.
  • Arvasi, Z. and Ege, U., Annihilators, multipliers and crossed modules, Applied Categorical Structures, 11, (2003), 487--506.
  • Aytekin, A. and Koçak, M., Pro-C completions process of crossed squares and some relations, World Applied Sciences Journal, 7 (7), (2009), 856--865.
  • Ellis, G.J., Higher dimensional crossed modules of algebras, J. Pure and Appl. Algebra, 52, (1988), 277--282.
  • Ellis, G.J., Crossed modules and their higher dimensional analogues, University of Wales, Ph.D. Thesis, (1984).
  • Koçak, M., Pro-C completions of crossed modules of commutative algebras, Algebras, Groups and Geometries, Vol 22(2), (2005).
  • Kokers, K.J. and Porter, T., Pro-C completions of crossed modules, Proceedings of the Edinburgh Mathematical Society, 33-1 (1990), 39--51.
  • Porter, T., Homology of commutative algebras and an invariant of Simis and Vasconceles, J.Algebra, 99, 2, (1987).
  • Ribes, L. and Zalesskii, P., Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, Springer-Verlag, Berlin, (2000).
  • Whitehead, J.H.C., Combinatorial homotopy II., Bull. Amer. Math. Soc., 55, (1949), 213--245.

Pro-C completions of crossed squares of commutative algebras

Year 2020, Volume: 69 Issue: 1, 320 - 335, 30.06.2020
https://doi.org/10.31801/cfsuasmas.556898

Abstract

In this paper we give the explicit construction of a pro-C completion functor which is defined in the category of crossed squares of commutative algebras. Afterwards, we study some functorial properties of this pro-C completion process.

References

  • Arvasi, Z., Crossed squares and 2-crossed modules of commutative algebras, Theory and Applications of Categories, 3(7), (1997), 160--181.
  • Arvasi, Z. and Ege, U., Annihilators, multipliers and crossed modules, Applied Categorical Structures, 11, (2003), 487--506.
  • Aytekin, A. and Koçak, M., Pro-C completions process of crossed squares and some relations, World Applied Sciences Journal, 7 (7), (2009), 856--865.
  • Ellis, G.J., Higher dimensional crossed modules of algebras, J. Pure and Appl. Algebra, 52, (1988), 277--282.
  • Ellis, G.J., Crossed modules and their higher dimensional analogues, University of Wales, Ph.D. Thesis, (1984).
  • Koçak, M., Pro-C completions of crossed modules of commutative algebras, Algebras, Groups and Geometries, Vol 22(2), (2005).
  • Kokers, K.J. and Porter, T., Pro-C completions of crossed modules, Proceedings of the Edinburgh Mathematical Society, 33-1 (1990), 39--51.
  • Porter, T., Homology of commutative algebras and an invariant of Simis and Vasconceles, J.Algebra, 99, 2, (1987).
  • Ribes, L. and Zalesskii, P., Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, Springer-Verlag, Berlin, (2000).
  • Whitehead, J.H.C., Combinatorial homotopy II., Bull. Amer. Math. Soc., 55, (1949), 213--245.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Hatice Gülsün Akay 0000-0001-7983-6852

Publication Date June 30, 2020
Submission Date April 22, 2019
Acceptance Date October 17, 2019
Published in Issue Year 2020 Volume: 69 Issue: 1

Cite

APA Gülsün Akay, H. (2020). Pro-C completions of crossed squares of commutative algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 320-335. https://doi.org/10.31801/cfsuasmas.556898
AMA Gülsün Akay H. Pro-C completions of crossed squares of commutative algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):320-335. doi:10.31801/cfsuasmas.556898
Chicago Gülsün Akay, Hatice. “Pro-C Completions of Crossed Squares of Commutative Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 320-35. https://doi.org/10.31801/cfsuasmas.556898.
EndNote Gülsün Akay H (June 1, 2020) Pro-C completions of crossed squares of commutative algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 320–335.
IEEE H. Gülsün Akay, “Pro-C completions of crossed squares of commutative algebras”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 320–335, 2020, doi: 10.31801/cfsuasmas.556898.
ISNAD Gülsün Akay, Hatice. “Pro-C Completions of Crossed Squares of Commutative Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 320-335. https://doi.org/10.31801/cfsuasmas.556898.
JAMA Gülsün Akay H. Pro-C completions of crossed squares of commutative algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:320–335.
MLA Gülsün Akay, Hatice. “Pro-C Completions of Crossed Squares of Commutative Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 320-35, doi:10.31801/cfsuasmas.556898.
Vancouver Gülsün Akay H. Pro-C completions of crossed squares of commutative algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):320-35.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.