Research Article
BibTex RIS Cite

SS-supplemented modules

Year 2020, Volume: 69 Issue: 1, 473 - 485, 30.06.2020
https://doi.org/10.31801/cfsuasmas.585727

Abstract

A module M is called ss-supplemented if every submodule U of M has a
supplement V in M such that U(intersection)  V is semisimple. It is shown that a finitely generated
module M is ss-supplemented if and only if it is supplemented and Rad(M) (submodule) Soc(M). A module
M is called strongly local if it is local and Rad(M) (submodule)  Soc(M). Any direct sum of strongly
local modules is ss-supplemented and coatomic. A ring R is semiperfect and Rad(R) (submodule)
Soc(RR) if and only if  every left R-module is ss-supplemented if and only if RR is a finite sum of strongly local
submodules.

References

  • Alizade, R., Bilhan, G. and Smith, P.F., Modules whose maximal submodules have supplements, Communications in Algebra, 29(6) (2001) 2389-2405.
  • Büyükaşık, E., Mermut, E. and Özdemir, S., Rad-supplemented modules, Rend. Sem. Mat. Univ. Padova 124 (2010) 157-177.
  • Kasch, F., Modules and Rings, London New York, 1982.
  • Lomp, C., On semilocal modules and rings, Communications in Algebra 27(4) (1999) 1921-1935.
  • Mohamed, S.H., Müller, B.J., Continuous and Discrete Modules, London Math. Soc. LNS 147 Cambridge University, 1990.
  • Sharpe, D.W., Vamos, P., Injective Modules, Cambridge University Press, Cambridge, 1972.
  • Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, 1991
  • Zhou, D. X., Zhang, X.R., Small-Essential Submodules and Morita Duality, Southeast Asian Bulletin of Mathematics 35 (2011) 1051-1062.
  • Zöschinger, H., Moduln die in jeder Erweiterung ein Komplement haben, Mathematica Scandinavica 35 (1974) 267-287.
  • Zöschinger, H., Komplementierte moduln über Dedekindringen, Journal of Algebra 29 (1974) 42-56.
Year 2020, Volume: 69 Issue: 1, 473 - 485, 30.06.2020
https://doi.org/10.31801/cfsuasmas.585727

Abstract

References

  • Alizade, R., Bilhan, G. and Smith, P.F., Modules whose maximal submodules have supplements, Communications in Algebra, 29(6) (2001) 2389-2405.
  • Büyükaşık, E., Mermut, E. and Özdemir, S., Rad-supplemented modules, Rend. Sem. Mat. Univ. Padova 124 (2010) 157-177.
  • Kasch, F., Modules and Rings, London New York, 1982.
  • Lomp, C., On semilocal modules and rings, Communications in Algebra 27(4) (1999) 1921-1935.
  • Mohamed, S.H., Müller, B.J., Continuous and Discrete Modules, London Math. Soc. LNS 147 Cambridge University, 1990.
  • Sharpe, D.W., Vamos, P., Injective Modules, Cambridge University Press, Cambridge, 1972.
  • Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, 1991
  • Zhou, D. X., Zhang, X.R., Small-Essential Submodules and Morita Duality, Southeast Asian Bulletin of Mathematics 35 (2011) 1051-1062.
  • Zöschinger, H., Moduln die in jeder Erweiterung ein Komplement haben, Mathematica Scandinavica 35 (1974) 267-287.
  • Zöschinger, H., Komplementierte moduln über Dedekindringen, Journal of Algebra 29 (1974) 42-56.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Engin Kaynar 0000-0002-1955-1326

Ergül Türkmen This is me 0000-0002-7082-1176

Hamza Çalışıcı 0000-0002-9897-9012

Publication Date June 30, 2020
Submission Date July 2, 2019
Acceptance Date November 20, 2019
Published in Issue Year 2020 Volume: 69 Issue: 1

Cite

APA Kaynar, E., Türkmen, E., & Çalışıcı, H. (2020). SS-supplemented modules. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 473-485. https://doi.org/10.31801/cfsuasmas.585727
AMA Kaynar E, Türkmen E, Çalışıcı H. SS-supplemented modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):473-485. doi:10.31801/cfsuasmas.585727
Chicago Kaynar, Engin, Ergül Türkmen, and Hamza Çalışıcı. “SS-Supplemented Modules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 473-85. https://doi.org/10.31801/cfsuasmas.585727.
EndNote Kaynar E, Türkmen E, Çalışıcı H (June 1, 2020) SS-supplemented modules. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 473–485.
IEEE E. Kaynar, E. Türkmen, and H. Çalışıcı, “SS-supplemented modules”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 473–485, 2020, doi: 10.31801/cfsuasmas.585727.
ISNAD Kaynar, Engin et al. “SS-Supplemented Modules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 473-485. https://doi.org/10.31801/cfsuasmas.585727.
JAMA Kaynar E, Türkmen E, Çalışıcı H. SS-supplemented modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:473–485.
MLA Kaynar, Engin et al. “SS-Supplemented Modules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 473-85, doi:10.31801/cfsuasmas.585727.
Vancouver Kaynar E, Türkmen E, Çalışıcı H. SS-supplemented modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):473-85.

Cited By











Cofinitely Semisimple (ss-) Lifting Modules
Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi
https://doi.org/10.53433/yyufbed.1143435




δss -supplemented modules and rings
Analele Universitatii "Ovidius" Constanta - Seria Matematica
https://doi.org/10.2478/auom-2020-0041

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.