Research Article
BibTex RIS Cite

Almost contact metric and metallic Riemannian structures

Year 2020, Volume: 69 Issue: 2, 1013 - 1024, 31.12.2020
https://doi.org/10.31801/cfsuasmas.647575

Abstract

The metallic structure is a fascinating topic that continually generates new ideas. In this work, new metallic manifolds are constructed starting from both almost contact metric manifolds and we obtain some important notions like the metallic deformation. We show that there exists a correspondence between the metallic Riemannian structures and the almost contact metric structures. We give an open question where we propose the first step to study the reverse, i.e. the construction of an almost contact metric structure starting from a metallic Riemannian structure. We give a concrete example to confirm this construction. 

Thanks

I have the honor to publish my research in your respected journal.

References

  • Beldjilali, G., Belkhelfa, M. , Kählerian structures on D-homothetic bi-warping, J. Geom. Symmetry Phys. 42 (2016), 1-13.
  • Beldjilali, G., Structures and D-isometric warping, HSJG, 2(1) (2020), 21-29 .
  • Beldjilali, G., Induced structures on Golden Riemannian manifolds., Beitr Algebra Geom., 59 (2018), 761-777.
  • Beldjilali, G., s-Golden Manifolds, Mediterr. J. Math., (2019), https://doi.org/10.1007/s00009-019-1343-9.
  • Beldjilali, G., A new class of Golden Riemannian manifold. Int. Electron. J. Geom., 13(1) (2020), 1-8.
  • Blair, D. E. , Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, Vol. 203, Birhauser, Boston, 2002
  • Acet, B. E., Lightlike hypersurfaces of metallic semi-Riemannian manifolds, Int. J. of Geo. Meth. in Mod. Phys., Vol. 15 (2018), 185-201 .
  • Crasmareanu, M., Hretecanu, C.E., Golden differential geometry, Chaos, Solitons & Fractals, 38 (2008), 1124-1146. doi: 10.1016/j.chaos.2008.04.007.
  • Debmath, P, Konar, A., A new type of structure on differentiable manifold, Int. Electron. J. Geom., 4 (2011), 102-114.
  • De Spinadel, V.W., The metallic means family and the multifractal, spectra. Nonlinear Anal., 36(6) (1999), 721-745.
  • Etayo, F., Santamaria, R. and Upadhyay, A., On the Geometry of Almost Golden Riemannian Manifolds, Mediterr. J. Math.,14 187 (2017). https://doi.org/10.1007/s00009-017-0991-x.
  • Hreţcanu, C.E.: Submanifolds in Riemannian manifold with Golden structure. Workshop on Finsler Geometry and its Applications, Hungary, (2007).
  • Hreţcanu C.E., and Blaga A.M., Hemi-slant submanifolds in metallic Riemannian manifolds, Carpathian J., 35 (1) (2019), 59-68.
  • Hreţcanu C.E., Crasmareanu M., Metallic structures on Riemannian Manifolds, Rev Un Mat Argentina. 54 (2013), 15-27.
  • Gezer A., Cengiz N., Salimov A., On integrability of Golden Riemannian structures, Turkish J. Math., 37 (2013), 693-703.
  • Gezer A., Karaman C., Golden-Hessian structures, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 86 (1) (2016), 41-46, .
  • Gönül S., Küpeli Erken I., Yazla A. and Murathan C., A Neutral relation between metallic structure and almost quadratic ϕ-structure, Turkish Journal of Mathematics, 43 (2019), 268-278.
  • Kenmotsu K., A class of almost contact Riemannian manifolds, J. Tohoku Math., 24 (1972), 93-103.
  • Marrero J. C., The local structure of trans-Sasakian manifolds, Annali di Matematica Pura ed Applicata 162(1) (1992), 77-86. Oubiña, J.A., New classes of almost contact metric structures, Publicationes Mathematicae, Debrecen, 32 (1985), 187-193.
  • Sharfuddin, A., Husain, S. I., Almost contact structures induced by conformal transformation, Publ. Inst. Math. Nouv., 32 (46) (1982), 155-159.
  • Tanno S., The topology of contact Riemannian manifolds, Illinois J. Math., 12 (1968), 700-717.
  • Yano, K., Kon, M., Structures on Manifolds, Series in Pure Math., Vol 3, World Sci.,1984.
Year 2020, Volume: 69 Issue: 2, 1013 - 1024, 31.12.2020
https://doi.org/10.31801/cfsuasmas.647575

Abstract

References

  • Beldjilali, G., Belkhelfa, M. , Kählerian structures on D-homothetic bi-warping, J. Geom. Symmetry Phys. 42 (2016), 1-13.
  • Beldjilali, G., Structures and D-isometric warping, HSJG, 2(1) (2020), 21-29 .
  • Beldjilali, G., Induced structures on Golden Riemannian manifolds., Beitr Algebra Geom., 59 (2018), 761-777.
  • Beldjilali, G., s-Golden Manifolds, Mediterr. J. Math., (2019), https://doi.org/10.1007/s00009-019-1343-9.
  • Beldjilali, G., A new class of Golden Riemannian manifold. Int. Electron. J. Geom., 13(1) (2020), 1-8.
  • Blair, D. E. , Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, Vol. 203, Birhauser, Boston, 2002
  • Acet, B. E., Lightlike hypersurfaces of metallic semi-Riemannian manifolds, Int. J. of Geo. Meth. in Mod. Phys., Vol. 15 (2018), 185-201 .
  • Crasmareanu, M., Hretecanu, C.E., Golden differential geometry, Chaos, Solitons & Fractals, 38 (2008), 1124-1146. doi: 10.1016/j.chaos.2008.04.007.
  • Debmath, P, Konar, A., A new type of structure on differentiable manifold, Int. Electron. J. Geom., 4 (2011), 102-114.
  • De Spinadel, V.W., The metallic means family and the multifractal, spectra. Nonlinear Anal., 36(6) (1999), 721-745.
  • Etayo, F., Santamaria, R. and Upadhyay, A., On the Geometry of Almost Golden Riemannian Manifolds, Mediterr. J. Math.,14 187 (2017). https://doi.org/10.1007/s00009-017-0991-x.
  • Hreţcanu, C.E.: Submanifolds in Riemannian manifold with Golden structure. Workshop on Finsler Geometry and its Applications, Hungary, (2007).
  • Hreţcanu C.E., and Blaga A.M., Hemi-slant submanifolds in metallic Riemannian manifolds, Carpathian J., 35 (1) (2019), 59-68.
  • Hreţcanu C.E., Crasmareanu M., Metallic structures on Riemannian Manifolds, Rev Un Mat Argentina. 54 (2013), 15-27.
  • Gezer A., Cengiz N., Salimov A., On integrability of Golden Riemannian structures, Turkish J. Math., 37 (2013), 693-703.
  • Gezer A., Karaman C., Golden-Hessian structures, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 86 (1) (2016), 41-46, .
  • Gönül S., Küpeli Erken I., Yazla A. and Murathan C., A Neutral relation between metallic structure and almost quadratic ϕ-structure, Turkish Journal of Mathematics, 43 (2019), 268-278.
  • Kenmotsu K., A class of almost contact Riemannian manifolds, J. Tohoku Math., 24 (1972), 93-103.
  • Marrero J. C., The local structure of trans-Sasakian manifolds, Annali di Matematica Pura ed Applicata 162(1) (1992), 77-86. Oubiña, J.A., New classes of almost contact metric structures, Publicationes Mathematicae, Debrecen, 32 (1985), 187-193.
  • Sharfuddin, A., Husain, S. I., Almost contact structures induced by conformal transformation, Publ. Inst. Math. Nouv., 32 (46) (1982), 155-159.
  • Tanno S., The topology of contact Riemannian manifolds, Illinois J. Math., 12 (1968), 700-717.
  • Yano, K., Kon, M., Structures on Manifolds, Series in Pure Math., Vol 3, World Sci.,1984.
There are 22 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Beldjilali Gherici 0000-0002-8933-1548

Publication Date December 31, 2020
Submission Date November 16, 2019
Acceptance Date April 3, 2020
Published in Issue Year 2020 Volume: 69 Issue: 2

Cite

APA Gherici, B. (2020). Almost contact metric and metallic Riemannian structures. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1013-1024. https://doi.org/10.31801/cfsuasmas.647575
AMA Gherici B. Almost contact metric and metallic Riemannian structures. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2020;69(2):1013-1024. doi:10.31801/cfsuasmas.647575
Chicago Gherici, Beldjilali. “Almost Contact Metric and Metallic Riemannian Structures”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 2 (December 2020): 1013-24. https://doi.org/10.31801/cfsuasmas.647575.
EndNote Gherici B (December 1, 2020) Almost contact metric and metallic Riemannian structures. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 2 1013–1024.
IEEE B. Gherici, “Almost contact metric and metallic Riemannian structures”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 2, pp. 1013–1024, 2020, doi: 10.31801/cfsuasmas.647575.
ISNAD Gherici, Beldjilali. “Almost Contact Metric and Metallic Riemannian Structures”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/2 (December 2020), 1013-1024. https://doi.org/10.31801/cfsuasmas.647575.
JAMA Gherici B. Almost contact metric and metallic Riemannian structures. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:1013–1024.
MLA Gherici, Beldjilali. “Almost Contact Metric and Metallic Riemannian Structures”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 2, 2020, pp. 1013-24, doi:10.31801/cfsuasmas.647575.
Vancouver Gherici B. Almost contact metric and metallic Riemannian structures. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(2):1013-24.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.