Research Article
BibTex RIS Cite
Year 2020, Volume: 69 Issue: 2, 1389 - 1404, 31.12.2020
https://doi.org/10.31801/cfsuasmas.749946

Abstract

References

  • Al-shami, T.M., Kocinac, Lj.D.R., The equivalence between the enriched and extended soft topologies, Appl. Comput. Math., 18 (2) (2019), 149-162.
  • Aras, C.G., Sonmez, A., Çakalli, H., An approach to soft functions, J. Math. Anal., 8 2 (2017), 129-138.
  • Aras, C.G., Ozturk, T.Y., Bayramov, S., Separation axioms on neutrosophic soft topological spaces, Turk. J. Math., 43 (2019), 498-510.
  • Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96.
  • Bayramov, S., Gunduz, C., On intuitionistic fuzzy soft topological spaces, TWMS J. Pure Appl. Math., 5 (2014), 66-79.
  • Bayramov, S., Gunduz, C., A new approach to separability and compactness in soft topological spaces, TWMS J Pure Appl. Math., 9 (2018), 82-93.
  • Bera, T., Mahapatra, N.K., On neutrosophic soft function, Annals of Fuzzy Mathematics and Informatics, 12 (1) (July 2016), 101-119.
  • Bera, T., Mahapatra, N.K., Introduction to neutrosophic soft topological space, Opsearch, 54 (2017), 841-867.
  • Cagman, N., Karatas, S., Enginoglu, S., Soft topology, Comput Math. Appl., 62 (2011), 351-358.
  • Çakalli, H., Das, P., Fuzzy compactness via summability, Appl. Math. Lett., 22 (11) (2009), 1665-1669.
  • Coskun, A.E., Aras, C.G., Cakalli, H., Sonmez, A., Soft matrices on soft multisets in an optimal decision process, AIP Conference Proceedings, 1759, 1, 020099 (2016); doi: 10.1063/1.4959713.
  • Deli, I., Broumi, S., Neutrosophic soft relations and some Properties, Ann. Fuzzy Math. Inform, 9 (2015), 169-182.
  • Gunduz, C., Bayramov, S., On the Tietze extension theorem in soft topological spaces, Proceedings of the Institute of Mathematics and Mechanics of the National Academy of Sciences of Azerbaijan, 43 (2017), 105-115.
  • Hussain, S., On some properties of intuitionistic fuzzy soft boundary, Commun. Fac. Sci. Univ. Ank. Series A1, 69 (2) (2020), 39-50.
  • Maji, P.K., Neutrosophic soft set, Ann. Fuzzy Math. Inform, 5 (2013), 157-168.
  • Molodtsov, D., Soft set theory-first results, Comput Math. Appl., 37 (1999), 19-31.
  • Pei, D., Miao, D., From soft sets to information systems, in: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang (Eds.), Proceedings of Granular Computing, in: IEEE 2 (2005), 617-621. Salma, A.A., Alblowi, S.A., Neutrosophic set and neutrosophic topological spaces, IOSR J. Math., 3 (2012), 31-35.
  • Shabir, M., Naz, M., On soft topological spaces, Comput Math. Appl., 61 (2011), 1786-1799.
  • Smarandache, F., Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math., 24 (2005), 287-297.
  • Xiao, Z., Chen, L., Zhong, B., Ye, S., Recognition for soft information based on the theory of soft sets, in: J. Chen (Ed.), Proceedings of ICSSSM-05, 2 (2005), 1104-1106.

An approach to pre-separation axioms in neutrosophic soft topological spaces

Year 2020, Volume: 69 Issue: 2, 1389 - 1404, 31.12.2020
https://doi.org/10.31801/cfsuasmas.749946

Abstract

In this study, we introduce the concept of neutrosophic soft pre-open (neutrosophic
soft pre-closed) sets and pre-separation axioms in neutrosophic soft topological spaces. In
particular, the relationship between these separation axioms are investigated. Also, we give
a new definition for neutrosophic soft topological subspace and define neutrosophic soft pre
irresolute soft and neutrosophic pre irresolute open soft functions.

References

  • Al-shami, T.M., Kocinac, Lj.D.R., The equivalence between the enriched and extended soft topologies, Appl. Comput. Math., 18 (2) (2019), 149-162.
  • Aras, C.G., Sonmez, A., Çakalli, H., An approach to soft functions, J. Math. Anal., 8 2 (2017), 129-138.
  • Aras, C.G., Ozturk, T.Y., Bayramov, S., Separation axioms on neutrosophic soft topological spaces, Turk. J. Math., 43 (2019), 498-510.
  • Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96.
  • Bayramov, S., Gunduz, C., On intuitionistic fuzzy soft topological spaces, TWMS J. Pure Appl. Math., 5 (2014), 66-79.
  • Bayramov, S., Gunduz, C., A new approach to separability and compactness in soft topological spaces, TWMS J Pure Appl. Math., 9 (2018), 82-93.
  • Bera, T., Mahapatra, N.K., On neutrosophic soft function, Annals of Fuzzy Mathematics and Informatics, 12 (1) (July 2016), 101-119.
  • Bera, T., Mahapatra, N.K., Introduction to neutrosophic soft topological space, Opsearch, 54 (2017), 841-867.
  • Cagman, N., Karatas, S., Enginoglu, S., Soft topology, Comput Math. Appl., 62 (2011), 351-358.
  • Çakalli, H., Das, P., Fuzzy compactness via summability, Appl. Math. Lett., 22 (11) (2009), 1665-1669.
  • Coskun, A.E., Aras, C.G., Cakalli, H., Sonmez, A., Soft matrices on soft multisets in an optimal decision process, AIP Conference Proceedings, 1759, 1, 020099 (2016); doi: 10.1063/1.4959713.
  • Deli, I., Broumi, S., Neutrosophic soft relations and some Properties, Ann. Fuzzy Math. Inform, 9 (2015), 169-182.
  • Gunduz, C., Bayramov, S., On the Tietze extension theorem in soft topological spaces, Proceedings of the Institute of Mathematics and Mechanics of the National Academy of Sciences of Azerbaijan, 43 (2017), 105-115.
  • Hussain, S., On some properties of intuitionistic fuzzy soft boundary, Commun. Fac. Sci. Univ. Ank. Series A1, 69 (2) (2020), 39-50.
  • Maji, P.K., Neutrosophic soft set, Ann. Fuzzy Math. Inform, 5 (2013), 157-168.
  • Molodtsov, D., Soft set theory-first results, Comput Math. Appl., 37 (1999), 19-31.
  • Pei, D., Miao, D., From soft sets to information systems, in: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang (Eds.), Proceedings of Granular Computing, in: IEEE 2 (2005), 617-621. Salma, A.A., Alblowi, S.A., Neutrosophic set and neutrosophic topological spaces, IOSR J. Math., 3 (2012), 31-35.
  • Shabir, M., Naz, M., On soft topological spaces, Comput Math. Appl., 61 (2011), 1786-1799.
  • Smarandache, F., Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math., 24 (2005), 287-297.
  • Xiao, Z., Chen, L., Zhong, B., Ye, S., Recognition for soft information based on the theory of soft sets, in: J. Chen (Ed.), Proceedings of ICSSSM-05, 2 (2005), 1104-1106.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Ahu Açıkgöz 0000-0003-1468-8240

Ferhat Esenbel

Publication Date December 31, 2020
Submission Date June 9, 2020
Acceptance Date September 20, 2020
Published in Issue Year 2020 Volume: 69 Issue: 2

Cite

APA Açıkgöz, A., & Esenbel, F. (2020). An approach to pre-separation axioms in neutrosophic soft topological spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1389-1404. https://doi.org/10.31801/cfsuasmas.749946
AMA Açıkgöz A, Esenbel F. An approach to pre-separation axioms in neutrosophic soft topological spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2020;69(2):1389-1404. doi:10.31801/cfsuasmas.749946
Chicago Açıkgöz, Ahu, and Ferhat Esenbel. “An Approach to Pre-Separation Axioms in Neutrosophic Soft Topological Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 2 (December 2020): 1389-1404. https://doi.org/10.31801/cfsuasmas.749946.
EndNote Açıkgöz A, Esenbel F (December 1, 2020) An approach to pre-separation axioms in neutrosophic soft topological spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 2 1389–1404.
IEEE A. Açıkgöz and F. Esenbel, “An approach to pre-separation axioms in neutrosophic soft topological spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 2, pp. 1389–1404, 2020, doi: 10.31801/cfsuasmas.749946.
ISNAD Açıkgöz, Ahu - Esenbel, Ferhat. “An Approach to Pre-Separation Axioms in Neutrosophic Soft Topological Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/2 (December 2020), 1389-1404. https://doi.org/10.31801/cfsuasmas.749946.
JAMA Açıkgöz A, Esenbel F. An approach to pre-separation axioms in neutrosophic soft topological spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:1389–1404.
MLA Açıkgöz, Ahu and Ferhat Esenbel. “An Approach to Pre-Separation Axioms in Neutrosophic Soft Topological Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 2, 2020, pp. 1389-04, doi:10.31801/cfsuasmas.749946.
Vancouver Açıkgöz A, Esenbel F. An approach to pre-separation axioms in neutrosophic soft topological spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(2):1389-404.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.