Research Article
BibTex RIS Cite
Year 2021, Volume: 70 Issue: 1, 510 - 521, 30.06.2021
https://doi.org/10.31801/cfsuasmas.724634

Abstract

References

  • Ding, Q., Inoguchi, J., Schrödinger flows, binormal motion for curves and second AKNS-hierarchies, Chaos Solitons and Fractals, 21 (3) (2004), 669-677. https://doi.org/10.1016/j.chaos.2003.12.092
  • Erdogdu, M., Özdemir, M., Geometry of Hasimoto surfaces in Minkowski 3-space, Math. Phys. Anal. Geom., 17 (1) (2014), 169-181. DOI:10.1007/s11040-014-9148-3
  • Fujika, A., Inoguchi, J., Spacelike surfaces with harmonic inverse mean curvature, J. Math. Sci. Univ. Tokyo, 7 (4) (2000), 657-698.
  • Grbovic, M. and Nesovic, E., On Bäcklund transformation and vortex filament equation for pseudo null curves in Minkowski 3-space, Int. J. Geom. Methods Mod. Phys. 13 (6) (2016), 1-14. https://doi.org/10.1142/S0219887816500778
  • Gürbüz, N., Intrinstic geometry of NLS equation and heat system in 3-dimensional Minkowski space, Adv. Stud. Theor., 4 (1) (2010), 557-564.
  • Gürbüz, N., The motion of timelike surfaces in timelike geodesic coordinates, Int. J. Math. Anal., 4 (2010), 349-356.
  • Hasimoto, H., A soliton on a vortex filament, J. Fluid. Mech., 51 (3) (1972), 477-485. https://doi.org/10.1017/S0022112072002307
  • Inoguchi, J., Timelike surfaces of constant mean curvature in Minkowski 3-space, Tokyo J. Math., 21 (1) (1998), 141-152.DOI:10.3836/tjm/1270041992
  • Inoguchi, J., Biharmonic curves in Minkowski 3-space, Int. J. Math. Math. Sci., (2003), 1365-1368. https://doi.org/10.1155/S016117120320805X
  • Kelleci, A., Bekta¸s, M., Ergüt, M., The Hasimoto surface according to bishop frame, Adıyaman University Journal of Science, 9 (2019 ), 13-22.
  • Özdemir, M., Ergin, A.A., Rotations with unit timelike quaternions in Minkowski 3-space, J. Geom. Phys., 56 (2) (2006), 322-336. https://doi.org/10.1016/j.geomphys.2005.02.004
  • Özdemir, M., Ergin, A.A., Parallel frames of non-lightlike curves, Missouri Journal of Mathematical Sciences, 20 (2) (2008), 127-137. DOI:10.35834/mjms/1316032813
  • Rogers, C., Schief, W.K., Intrinsic geometry of the NLS equation and its backlund transformation, Stud. Appl. Math., 101 (3) (1998), 267-288. https://doi.org/10.1111/14679590.00093
  • Rogers, C., Schief, W.K., Backlund and Darboux Transformations: Geometry of Modern Applications in Soliton Theory, Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511606359
  • Schief, W.K., Rogers, C., Binormal motion of curves of constant curvature and torsion, generation of soliton surfaces, Proc. R. Soc. Lond. A., 455 (1988) (1999), 3163-3188. https://doi.org/10.1098/rspa.1999.0445
  • Marris, A. W., Passman, S. L., Vector fields and flows on developable surfaces, Arch. Ration. Mech. Anal., 32 (1) (1969), 29-86. https://doi.org/10.1007/BF00253256
  • Rogers, C., Kingston, J. G. Nondissipative magneto-hydrodynamic flows with magnetic and velocity field lines orthogonal geodesics, SIAM J. Appl. Math., 26 (1) (1974), 183-195. https://doi.org/10.1137/0126015

Differential geometric aspects of nonlinear Schrödinger equation

Year 2021, Volume: 70 Issue: 1, 510 - 521, 30.06.2021
https://doi.org/10.31801/cfsuasmas.724634

Abstract

The main scope of this paper is to examine the smoke ring (or vortex filament) equation which can be viewed as a dynamical system on the space curve in E³. The differential geometric properties the soliton surface accociated with Nonlinear Schrödinger (NLS) equation, which is called NLS surface or Hasimoto surface, are investigated by using Darboux frame. Moreover, Gaussian and mean curvature of Hasimoto surface are found in terms of Darboux curvatures k_{n}, k_{g} and τ_{g.}. Then, we give a different proof of that the s- parameter curves of NLS surface are the geodesics of the soliton surface. As applications we examine two NLS surfaces with Darboux Frame.

References

  • Ding, Q., Inoguchi, J., Schrödinger flows, binormal motion for curves and second AKNS-hierarchies, Chaos Solitons and Fractals, 21 (3) (2004), 669-677. https://doi.org/10.1016/j.chaos.2003.12.092
  • Erdogdu, M., Özdemir, M., Geometry of Hasimoto surfaces in Minkowski 3-space, Math. Phys. Anal. Geom., 17 (1) (2014), 169-181. DOI:10.1007/s11040-014-9148-3
  • Fujika, A., Inoguchi, J., Spacelike surfaces with harmonic inverse mean curvature, J. Math. Sci. Univ. Tokyo, 7 (4) (2000), 657-698.
  • Grbovic, M. and Nesovic, E., On Bäcklund transformation and vortex filament equation for pseudo null curves in Minkowski 3-space, Int. J. Geom. Methods Mod. Phys. 13 (6) (2016), 1-14. https://doi.org/10.1142/S0219887816500778
  • Gürbüz, N., Intrinstic geometry of NLS equation and heat system in 3-dimensional Minkowski space, Adv. Stud. Theor., 4 (1) (2010), 557-564.
  • Gürbüz, N., The motion of timelike surfaces in timelike geodesic coordinates, Int. J. Math. Anal., 4 (2010), 349-356.
  • Hasimoto, H., A soliton on a vortex filament, J. Fluid. Mech., 51 (3) (1972), 477-485. https://doi.org/10.1017/S0022112072002307
  • Inoguchi, J., Timelike surfaces of constant mean curvature in Minkowski 3-space, Tokyo J. Math., 21 (1) (1998), 141-152.DOI:10.3836/tjm/1270041992
  • Inoguchi, J., Biharmonic curves in Minkowski 3-space, Int. J. Math. Math. Sci., (2003), 1365-1368. https://doi.org/10.1155/S016117120320805X
  • Kelleci, A., Bekta¸s, M., Ergüt, M., The Hasimoto surface according to bishop frame, Adıyaman University Journal of Science, 9 (2019 ), 13-22.
  • Özdemir, M., Ergin, A.A., Rotations with unit timelike quaternions in Minkowski 3-space, J. Geom. Phys., 56 (2) (2006), 322-336. https://doi.org/10.1016/j.geomphys.2005.02.004
  • Özdemir, M., Ergin, A.A., Parallel frames of non-lightlike curves, Missouri Journal of Mathematical Sciences, 20 (2) (2008), 127-137. DOI:10.35834/mjms/1316032813
  • Rogers, C., Schief, W.K., Intrinsic geometry of the NLS equation and its backlund transformation, Stud. Appl. Math., 101 (3) (1998), 267-288. https://doi.org/10.1111/14679590.00093
  • Rogers, C., Schief, W.K., Backlund and Darboux Transformations: Geometry of Modern Applications in Soliton Theory, Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511606359
  • Schief, W.K., Rogers, C., Binormal motion of curves of constant curvature and torsion, generation of soliton surfaces, Proc. R. Soc. Lond. A., 455 (1988) (1999), 3163-3188. https://doi.org/10.1098/rspa.1999.0445
  • Marris, A. W., Passman, S. L., Vector fields and flows on developable surfaces, Arch. Ration. Mech. Anal., 32 (1) (1969), 29-86. https://doi.org/10.1007/BF00253256
  • Rogers, C., Kingston, J. G. Nondissipative magneto-hydrodynamic flows with magnetic and velocity field lines orthogonal geodesics, SIAM J. Appl. Math., 26 (1) (1974), 183-195. https://doi.org/10.1137/0126015
There are 17 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Melek Erdoğdu 0000-0001-9610-6229

Ayşe Yavuz 0000-0002-0469-3786

Publication Date June 30, 2021
Submission Date April 21, 2020
Acceptance Date February 1, 2021
Published in Issue Year 2021 Volume: 70 Issue: 1

Cite

APA Erdoğdu, M., & Yavuz, A. (2021). Differential geometric aspects of nonlinear Schrödinger equation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), 510-521. https://doi.org/10.31801/cfsuasmas.724634
AMA Erdoğdu M, Yavuz A. Differential geometric aspects of nonlinear Schrödinger equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2021;70(1):510-521. doi:10.31801/cfsuasmas.724634
Chicago Erdoğdu, Melek, and Ayşe Yavuz. “Differential Geometric Aspects of Nonlinear Schrödinger Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (June 2021): 510-21. https://doi.org/10.31801/cfsuasmas.724634.
EndNote Erdoğdu M, Yavuz A (June 1, 2021) Differential geometric aspects of nonlinear Schrödinger equation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 1 510–521.
IEEE M. Erdoğdu and A. Yavuz, “Differential geometric aspects of nonlinear Schrödinger equation”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 1, pp. 510–521, 2021, doi: 10.31801/cfsuasmas.724634.
ISNAD Erdoğdu, Melek - Yavuz, Ayşe. “Differential Geometric Aspects of Nonlinear Schrödinger Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/1 (June 2021), 510-521. https://doi.org/10.31801/cfsuasmas.724634.
JAMA Erdoğdu M, Yavuz A. Differential geometric aspects of nonlinear Schrödinger equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:510–521.
MLA Erdoğdu, Melek and Ayşe Yavuz. “Differential Geometric Aspects of Nonlinear Schrödinger Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 1, 2021, pp. 510-21, doi:10.31801/cfsuasmas.724634.
Vancouver Erdoğdu M, Yavuz A. Differential geometric aspects of nonlinear Schrödinger equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(1):510-21.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.