Research Article
BibTex RIS Cite

Cotton tensor on Sasakian 3-manifolds admitting eta-Ricci solitons

Year 2021, Volume: 70 Issue: 2, 569 - 581, 31.12.2021
https://doi.org/10.31801/cfsuasmas.769405

Abstract

The object of the present paper is to characterize Cotton tensor on a 3-dimensional Sasakian manifold admitting $\eta$-Ricci solitons. After introduction, we study 3-dimensional Sasakian manifolds and introduce a new notion, namely, Cotton pseudo-symmetric manifolds. Next we deal with the study Cotton tensor on a Sasakian 3-manifold admitting $\eta$-Ricci solitons. Among others we prove that such a manifold is a manifold of constant scalar curvature and Einstein manifold with some appropriate conditions. Also, we classify the nature of the soliton metric. Finally, we give an important remark.

Supporting Institution

Council of Scientific and Industrial Research, India

Project Number

File no : 09/028(1007)/2017-EMR-1)

Thanks

The author Debabrata Kar is supported by the Council of Scientific and Industrial Research, India

References

  • Alegre, P. and Carriazo, A., Semi-Riemannian generalized Sasakian space forms, Bulletin of the Malaysian Mathematical Sciences Society, 41 (2018), 1-14. DOI:10.1007/ s40840-015-0215-0.
  • Ayar, G. and Yildirim, M., η-Ricci solitons on nearly Kenmotsu manifolds, Asian-European Journal of Mathematics, 12(6) (2019), 2040002 (8pp.). DOI:10.1142/S1793557120400021
  • Blaga, A. M., η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat, 30(2) (2016), 489-496.
  • Blaga, A. M., η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl., 20 (2015), 1-13.
  • Blaga, A. M., Torse-forming η-Ricci solitons in almost paracontact η-Einstein geometry, Filomat, 31(2) (2017), 499-504.
  • Boeckx, E., Kowalski, O. and Vanhecke, L., Riemannian Manifolds of Conullity Two, Singapore World Sci. Publishing, 1996.
  • Blair, D. E., Lecture Notes in Mathematics, 509, Springer-Verlag Berlin, 1976.
  • Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, Boston, 2010.
  • Blair, D. E., Koufogiorgos, T. and Sharma, R., A classification of 3-dimensional contact metric manifolds with Qϕ = ϕQ, Kodai Math. J., 13 (1990), 391-401.
  • Cartan, E., Sur une classe remarqable d'espaces de Riemann, Bull. Soc. Math. France., 54 (1926), 214-264.
  • Cho, J. T. and Kimura, M., Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61(2) (2009), 205-212.
  • Calin, C. and Crasmareanu, M., From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Soc., 33(3) (2010), 361-368.
  • Chave, T. and Valent, G., Quasi-Einstein metrics and their renoirmalizability properties, Helv. Phys. Acta., 69 (1996), 344-347.
  • Chave, T. and Valent, G., On a class of compact and non-compact quasi-Einstein metrics and their renoirmalizability properties, Nuclear Phys. B., 478 (1996), 758-778.
  • Deshmukh, S., Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie, 55(103) 1 (2012), 41-50.
  • Deshmukh, S., Alodan, H. and Al-Sodais, H., A Note on Ricci Soliton, Balkan J. Geom. Appl., 16(1) (2011), 48-55.
  • Hamilton, R. S., The Ricci flow on surfaces, mathematics and general relativity, (Santa Cruz, CA, 1986), 237-262. Contemp. Math., 71, American Math. Soc., 1988.
  • Hamilton, R. S., Three manifolds with positive Ricci curvature, J. Di¤ erential Geom., 17 (1982), 255-306.
  • Ivey, T., Ricci solitons on compact 3-manifolds, Diff. Geom. Appl., 3 (1993), 301-307.
  • Kar, D., Majhi, P. and De, U. C., η-Ricci solitons on 3-dimensional N(k)-contact metric manifolds, Acta Universitatis Apulensis, 54 (2018), 71-88.
  • Kim, B.H., Fibered Riemannian spaces with quasi-Sasakian structures, Hiroshima Math. J., 20 (1990), 477-513.
  • Kowalski, O., An explicit classification of 3-dimensional Riemannian spaces satisfying R(X; Y ):R = 0, Czechoslovak Math. J., 46(121) (1996) (3), 427-474.
  • Majhi, P., De, U. C. and Kar, D., η-Ricci Solitons on Sasakian 3-Manifolds, Anal. de Vest Timisoara, LV(2) (2017), 143-156.
  • Prakasha, D. G. and Hadimani, B. S., η-Ricci solitons on para-Sasakian manifolds, J. Geometry, 108 (2017), 383-392.
  • Prakasha, D. G., Zengin, F. O. and Chavan, V., On M-projectively semisymmetric Lorentzian α-Sasakian manifolds, Afrika Matematika, 28 (2017), 899-908. DOI:10.1007/s13370-017-0493-9.
  • Szabo , Z. I., Structure theorems on Riemannian spaces satisfying R(X; Y ):R = 0, the local version, J. Diff. Geom., 17 (1982), 531-582.
  • Turan, M., Yetim, C. and Chaubey, S. K., On quasi-Sasakian 3-manifolds admitting η-Ricci solitons, Filomat, 33(15) (2019), 4923-4930. https://doi.org/10.2298/FIL1915923T
  • Verstraelen, L., Comments on Pseudosymmetry in the Sense of Ryszard Deszcz, In: Geometry and Topology of Submanifolds, VI. River Edge, NJ: World Sci. Publishing, 1994, 199-209.
  • Wang, Y. and Liu, X., Ricci solitons on three-dimensional η-Einstein almost Kenmotsu manifolds, Taiwanese Journal of Mathematics, 19(1) (2015), 91-100.
Year 2021, Volume: 70 Issue: 2, 569 - 581, 31.12.2021
https://doi.org/10.31801/cfsuasmas.769405

Abstract

Project Number

File no : 09/028(1007)/2017-EMR-1)

References

  • Alegre, P. and Carriazo, A., Semi-Riemannian generalized Sasakian space forms, Bulletin of the Malaysian Mathematical Sciences Society, 41 (2018), 1-14. DOI:10.1007/ s40840-015-0215-0.
  • Ayar, G. and Yildirim, M., η-Ricci solitons on nearly Kenmotsu manifolds, Asian-European Journal of Mathematics, 12(6) (2019), 2040002 (8pp.). DOI:10.1142/S1793557120400021
  • Blaga, A. M., η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat, 30(2) (2016), 489-496.
  • Blaga, A. M., η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl., 20 (2015), 1-13.
  • Blaga, A. M., Torse-forming η-Ricci solitons in almost paracontact η-Einstein geometry, Filomat, 31(2) (2017), 499-504.
  • Boeckx, E., Kowalski, O. and Vanhecke, L., Riemannian Manifolds of Conullity Two, Singapore World Sci. Publishing, 1996.
  • Blair, D. E., Lecture Notes in Mathematics, 509, Springer-Verlag Berlin, 1976.
  • Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, Boston, 2010.
  • Blair, D. E., Koufogiorgos, T. and Sharma, R., A classification of 3-dimensional contact metric manifolds with Qϕ = ϕQ, Kodai Math. J., 13 (1990), 391-401.
  • Cartan, E., Sur une classe remarqable d'espaces de Riemann, Bull. Soc. Math. France., 54 (1926), 214-264.
  • Cho, J. T. and Kimura, M., Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61(2) (2009), 205-212.
  • Calin, C. and Crasmareanu, M., From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Soc., 33(3) (2010), 361-368.
  • Chave, T. and Valent, G., Quasi-Einstein metrics and their renoirmalizability properties, Helv. Phys. Acta., 69 (1996), 344-347.
  • Chave, T. and Valent, G., On a class of compact and non-compact quasi-Einstein metrics and their renoirmalizability properties, Nuclear Phys. B., 478 (1996), 758-778.
  • Deshmukh, S., Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie, 55(103) 1 (2012), 41-50.
  • Deshmukh, S., Alodan, H. and Al-Sodais, H., A Note on Ricci Soliton, Balkan J. Geom. Appl., 16(1) (2011), 48-55.
  • Hamilton, R. S., The Ricci flow on surfaces, mathematics and general relativity, (Santa Cruz, CA, 1986), 237-262. Contemp. Math., 71, American Math. Soc., 1988.
  • Hamilton, R. S., Three manifolds with positive Ricci curvature, J. Di¤ erential Geom., 17 (1982), 255-306.
  • Ivey, T., Ricci solitons on compact 3-manifolds, Diff. Geom. Appl., 3 (1993), 301-307.
  • Kar, D., Majhi, P. and De, U. C., η-Ricci solitons on 3-dimensional N(k)-contact metric manifolds, Acta Universitatis Apulensis, 54 (2018), 71-88.
  • Kim, B.H., Fibered Riemannian spaces with quasi-Sasakian structures, Hiroshima Math. J., 20 (1990), 477-513.
  • Kowalski, O., An explicit classification of 3-dimensional Riemannian spaces satisfying R(X; Y ):R = 0, Czechoslovak Math. J., 46(121) (1996) (3), 427-474.
  • Majhi, P., De, U. C. and Kar, D., η-Ricci Solitons on Sasakian 3-Manifolds, Anal. de Vest Timisoara, LV(2) (2017), 143-156.
  • Prakasha, D. G. and Hadimani, B. S., η-Ricci solitons on para-Sasakian manifolds, J. Geometry, 108 (2017), 383-392.
  • Prakasha, D. G., Zengin, F. O. and Chavan, V., On M-projectively semisymmetric Lorentzian α-Sasakian manifolds, Afrika Matematika, 28 (2017), 899-908. DOI:10.1007/s13370-017-0493-9.
  • Szabo , Z. I., Structure theorems on Riemannian spaces satisfying R(X; Y ):R = 0, the local version, J. Diff. Geom., 17 (1982), 531-582.
  • Turan, M., Yetim, C. and Chaubey, S. K., On quasi-Sasakian 3-manifolds admitting η-Ricci solitons, Filomat, 33(15) (2019), 4923-4930. https://doi.org/10.2298/FIL1915923T
  • Verstraelen, L., Comments on Pseudosymmetry in the Sense of Ryszard Deszcz, In: Geometry and Topology of Submanifolds, VI. River Edge, NJ: World Sci. Publishing, 1994, 199-209.
  • Wang, Y. and Liu, X., Ricci solitons on three-dimensional η-Einstein almost Kenmotsu manifolds, Taiwanese Journal of Mathematics, 19(1) (2015), 91-100.
There are 29 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Debabrata Kar This is me 0000-0002-9366-7095

Pradip Majhi 0000-0002-4364-1815

Project Number File no : 09/028(1007)/2017-EMR-1)
Publication Date December 31, 2021
Submission Date July 14, 2020
Acceptance Date December 20, 2020
Published in Issue Year 2021 Volume: 70 Issue: 2

Cite

APA Kar, D., & Majhi, P. (2021). Cotton tensor on Sasakian 3-manifolds admitting eta-Ricci solitons. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 569-581. https://doi.org/10.31801/cfsuasmas.769405
AMA Kar D, Majhi P. Cotton tensor on Sasakian 3-manifolds admitting eta-Ricci solitons. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):569-581. doi:10.31801/cfsuasmas.769405
Chicago Kar, Debabrata, and Pradip Majhi. “Cotton Tensor on Sasakian 3-Manifolds Admitting Eta-Ricci Solitons”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 569-81. https://doi.org/10.31801/cfsuasmas.769405.
EndNote Kar D, Majhi P (December 1, 2021) Cotton tensor on Sasakian 3-manifolds admitting eta-Ricci solitons. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 569–581.
IEEE D. Kar and P. Majhi, “Cotton tensor on Sasakian 3-manifolds admitting eta-Ricci solitons”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 569–581, 2021, doi: 10.31801/cfsuasmas.769405.
ISNAD Kar, Debabrata - Majhi, Pradip. “Cotton Tensor on Sasakian 3-Manifolds Admitting Eta-Ricci Solitons”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 569-581. https://doi.org/10.31801/cfsuasmas.769405.
JAMA Kar D, Majhi P. Cotton tensor on Sasakian 3-manifolds admitting eta-Ricci solitons. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:569–581.
MLA Kar, Debabrata and Pradip Majhi. “Cotton Tensor on Sasakian 3-Manifolds Admitting Eta-Ricci Solitons”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 569-81, doi:10.31801/cfsuasmas.769405.
Vancouver Kar D, Majhi P. Cotton tensor on Sasakian 3-manifolds admitting eta-Ricci solitons. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):569-81.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.