Research Article
BibTex RIS Cite
Year 2021, Volume: 70 Issue: 2, 653 - 663, 31.12.2021
https://doi.org/10.31801/cfsuasmas.786804

Abstract

References

  • Akbari, S., Mohammadan, A., On the zero-divisor graph of a commutative ring, J. Algebra., 274 (2004), 847-855, https://doi.org/10.1016/S0021-8693(03)00435-6.
  • Anderson, D. F., Badawi, A., On the zero-divisor graph of a ring, Comm. Algebra., 36 (2008), 3073-3092, https://doi.org/10.1080/00927870802110888.
  • Anderson, D. D., Naseer, M., Beck's coloring of a commutative ring, J. Algebra., 159 (1993), 500-514. https://doi.org/10.1006/jabr.1993.1171
  • Anderson, D. F., Livingston, P. S., The zero-divisor graph of a commutative ring, J. Algebra., 217 (1999), 434-447, https://doi.org/10.1006/jabr.1998.7840.
  • Anderson, D. F., Mulay, S. B., On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra., 210 (2007), 543-550, https://doi.org/10.1016/j.jpaa.2006.10.007.
  • Axtel, M., Stickles, J., Zero-divisor graphs of idealizations, J. Pure Appl. Algebra., 204 (2006), 235-243, https://doi.org/10.1016/j.jpaa.2005.04.004.
  • Badawi, A., Darani, A. Y., On weakly 2-absorbing ideals of commutative rings, Houston J. Math., 39 (2013), 441-452.
  • Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75 (2007), 417-429. DOI: https://doi.org/10.1017/S0004972700039344.
  • Beck, I., Coloring of commutative rings, J. Algebra., 116 (1988), 208-226, https://doi.org/10.1016/0021-8693(88)90202-5.
  • Bollaboás, B., Graph Theory, An Introductory Course, Springer-Verlag, New York, 1979.
  • Elele, A. B., Ulucak, G., 3-zero-divisor hypergraph regarding an ideal, 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, 2017, 1-4, doi:10.1109/ICMSAO.2017.7934846.
  • Gilmer, R., Multiplicative ideal theory. Queen's Papers in Pure and Appl. Math., 90, 1992, doi:10.1017/S0008439500031234.
  • Livingston, P. S., Structure in Zero-Divisor Graphs of Commutative Rings, Master Thesis, The University of Tennessee, Knoxville, TN, 1997.
  • Lucas, T. G., The diameter of a zero-divisor graph, J. Algebra 301 (2006), 174-193, https://doi.org/10.1016/j.jalgebra.2006.01.019.
  • Redmond, S. P., On the zero-divisor graphs of small finite commutative rings, Discrete Math., 307 (2007), 1155-1166, https://doi.org/10.1016/j.disc.2006.07.025.

The triple zero graph of a commutative ring

Year 2021, Volume: 70 Issue: 2, 653 - 663, 31.12.2021
https://doi.org/10.31801/cfsuasmas.786804

Abstract

Let $R$ be a commutative ring with non-zero identity. We define the set of
triple zero elements of $R$ by $TZ(R)=\{a\in Z(R)^{\ast}:$ there exists
$b,c\in R\backslash\{0\}$ such that $abc=0$, $ab\neq0$, $ac\neq0$,
$bc\neq0\}.$ In this paper, we introduce and study some properties of the
triple zero graph of $R$ which is an undirected graph $TZ\Gamma(R)$ with
vertices $TZ(R),$ and two vertices $a$ and $b$ are adjacent if and only if
$ab\neq0$ and there exists a non-zero element $c$ of $R$ such that $ac\neq0$,
$bc\neq0$, and $abc=0$. We investigate some properties of the triple zero
graph of a general ZPI-ring $R,$ we prove that $diam(TZ\Gamma(R))\in\{0,1,2\}$
and $gr(G)\in\{3,\infty\}$.

References

  • Akbari, S., Mohammadan, A., On the zero-divisor graph of a commutative ring, J. Algebra., 274 (2004), 847-855, https://doi.org/10.1016/S0021-8693(03)00435-6.
  • Anderson, D. F., Badawi, A., On the zero-divisor graph of a ring, Comm. Algebra., 36 (2008), 3073-3092, https://doi.org/10.1080/00927870802110888.
  • Anderson, D. D., Naseer, M., Beck's coloring of a commutative ring, J. Algebra., 159 (1993), 500-514. https://doi.org/10.1006/jabr.1993.1171
  • Anderson, D. F., Livingston, P. S., The zero-divisor graph of a commutative ring, J. Algebra., 217 (1999), 434-447, https://doi.org/10.1006/jabr.1998.7840.
  • Anderson, D. F., Mulay, S. B., On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra., 210 (2007), 543-550, https://doi.org/10.1016/j.jpaa.2006.10.007.
  • Axtel, M., Stickles, J., Zero-divisor graphs of idealizations, J. Pure Appl. Algebra., 204 (2006), 235-243, https://doi.org/10.1016/j.jpaa.2005.04.004.
  • Badawi, A., Darani, A. Y., On weakly 2-absorbing ideals of commutative rings, Houston J. Math., 39 (2013), 441-452.
  • Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75 (2007), 417-429. DOI: https://doi.org/10.1017/S0004972700039344.
  • Beck, I., Coloring of commutative rings, J. Algebra., 116 (1988), 208-226, https://doi.org/10.1016/0021-8693(88)90202-5.
  • Bollaboás, B., Graph Theory, An Introductory Course, Springer-Verlag, New York, 1979.
  • Elele, A. B., Ulucak, G., 3-zero-divisor hypergraph regarding an ideal, 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, 2017, 1-4, doi:10.1109/ICMSAO.2017.7934846.
  • Gilmer, R., Multiplicative ideal theory. Queen's Papers in Pure and Appl. Math., 90, 1992, doi:10.1017/S0008439500031234.
  • Livingston, P. S., Structure in Zero-Divisor Graphs of Commutative Rings, Master Thesis, The University of Tennessee, Knoxville, TN, 1997.
  • Lucas, T. G., The diameter of a zero-divisor graph, J. Algebra 301 (2006), 174-193, https://doi.org/10.1016/j.jalgebra.2006.01.019.
  • Redmond, S. P., On the zero-divisor graphs of small finite commutative rings, Discrete Math., 307 (2007), 1155-1166, https://doi.org/10.1016/j.disc.2006.07.025.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Ece Yetkin Çelikel 0000-0001-6194-656X

Publication Date December 31, 2021
Submission Date August 27, 2020
Acceptance Date February 15, 2021
Published in Issue Year 2021 Volume: 70 Issue: 2

Cite

APA Yetkin Çelikel, E. (2021). The triple zero graph of a commutative ring. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 653-663. https://doi.org/10.31801/cfsuasmas.786804
AMA Yetkin Çelikel E. The triple zero graph of a commutative ring. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):653-663. doi:10.31801/cfsuasmas.786804
Chicago Yetkin Çelikel, Ece. “The Triple Zero Graph of a Commutative Ring”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 653-63. https://doi.org/10.31801/cfsuasmas.786804.
EndNote Yetkin Çelikel E (December 1, 2021) The triple zero graph of a commutative ring. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 653–663.
IEEE E. Yetkin Çelikel, “The triple zero graph of a commutative ring”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 653–663, 2021, doi: 10.31801/cfsuasmas.786804.
ISNAD Yetkin Çelikel, Ece. “The Triple Zero Graph of a Commutative Ring”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 653-663. https://doi.org/10.31801/cfsuasmas.786804.
JAMA Yetkin Çelikel E. The triple zero graph of a commutative ring. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:653–663.
MLA Yetkin Çelikel, Ece. “The Triple Zero Graph of a Commutative Ring”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 653-6, doi:10.31801/cfsuasmas.786804.
Vancouver Yetkin Çelikel E. The triple zero graph of a commutative ring. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):653-6.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.